Prüfung zur Systemtheorie und Regelungstechnik I, Universität Freiburg, SoSe 2021 (Prof. Dr. M. Diehl)

Mikroklausur 1 am 11.5.2021

Übungsgruppe: 1 Tutor*in 1	2	Tutor*in 2	3 Tutor*in 3
Name:	Matrikelı	nummer:	Punkte: /9
Füllen Sie bitte Ihre Daten ein und m rechnungen nutzen, aber bitte geben S mehrere Kreuze 0 Punkte.		_	
1. Wie lautet der Imaginärteil von (a) $e^{at} \cdot \sin(bt)$	$ \begin{array}{c c} & e^{(aj+b)jt}? \\ \hline & (b) & e^{-at} \cdot \sin(bt) \end{array} $	(c) $e^{-bt} \cdot \sin(at)$	(d) e^{jbt}
2. Multiplizieren Sie $z_1 = 4 + 7j$	j mit $z_2 = 5 - j$. Das Ergebnis i		
(a) $27 + 31j$, , , , , , , , , , , , , , , , , , ,	(b) $13 + 31j$	
(c) $31 + 13j$		(d) $27 + 39j$	
3. Dividieren Sie $a = 7e^{6\pi j}$ durch	h $b = \frac{4}{7}e^{-\pi j}$. Das Ergebnis ist g	gegeben durch:	
(a) $\qquad \frac{49}{4}e^{5\pi j}$	(b) $\frac{49}{4}e^{7\pi j}$	(c) $4e^{7\pi j}$	(d) $4e^{5\pi j}$
4. Bestimmen Sie das Produkt A	$T \cdot x \text{ von } A = \begin{bmatrix} -2 & -1 \\ 3 & -6 \end{bmatrix} \text{ und } $	$x = \begin{bmatrix} -4\\4 \end{bmatrix}.$	
(a) $\begin{bmatrix} 4 \\ -28 \end{bmatrix}$	b)	$ \begin{array}{c c} (c) & 20 \\ -20 \end{array} $	(d)
5. Multiplizieren Sie die beiden M	Matrizen A_1 und A_2 mit $A_1=\left[ight.$	$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ und $A_2 = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix}$	
$ \begin{array}{c c} (a) & \begin{bmatrix} -2 & 6 \\ -2 & 8 \end{bmatrix} \end{array} $	$ b) \square \begin{bmatrix} -2 & -2 \\ 6 & 8 \end{bmatrix} $		$ \begin{array}{c c} (d) & \begin{bmatrix} 6 & -2 \\ 8 & -2 \end{bmatrix} \end{array} $
6. Ein hängendes Pendel, auf das Nehmen Sie $x = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}$ als Zusta B an.			$-mgL\theta - c\dot{\theta}L + FL$ beschrieben n $\dot{x} = Ax + Bu$. Geben Sie A und
$\lceil maL - cL \rceil$	$B = \begin{bmatrix} L \\ 0 \end{bmatrix}$	$(b) \square A = \begin{bmatrix} 0 & 1 \\ -mgL & -cL \end{bmatrix}$	
(c) $A = \begin{bmatrix} 0 & 1 \\ -\frac{mgL}{I} & -\frac{cL}{I} \end{bmatrix}$	$\left], B = \begin{bmatrix} 0 \\ \frac{L}{T} \end{bmatrix} \right]$	(d) $A = \begin{bmatrix} 0 & 1 \\ \frac{mgL}{I} & \frac{cL}{I} \end{bmatrix}$, E	$B = \begin{bmatrix} 0 \\ \frac{L}{T} \end{bmatrix}$
-	hwindigkeit v . Der Eingang des	Systems ist die Antriebskraft I	die Position des Fahrzeugs in der F. Es gilt $\dot{v}=0.5\sin(4p)+0.5F$ Form $\dot{x}=Ax+Bu$. Geben Sie A
(a) $A = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$	0 0.5	(b) $A = \begin{bmatrix} \pi & \pi \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} \pi & \pi \\ 1 & 1 \end{bmatrix}$	
$(c) \square A = \begin{bmatrix} 0.5 & 0 \\ 4 & 0 \end{bmatrix}, B =$	$\begin{bmatrix} 0.5 \\ 0 \end{bmatrix}$		0.5
zur vertikalen, d.h. während de der Rotorgeschwindigkeit ist d	lle schweben. Der Helikopter m s Flugs gilt $ u_1 < 90^\circ$) und die ie Bewegungsgleichung für die v	it der Masse m hat als Eingänge Geschwindigkeit seines Rotors w ertikale z -Achse gegeben durch	dition auf eine Höhe von 3 Meter er seinen Kippwinkel u_1 (gemesser u_2 . Abhängig vom Kippwinkel und $m \cdot \dot{v}_z = \cos(u_1) \cdot k_p \cdot u_2^2 - m \cdot g_n$ been durch: $m \cdot \dot{v}_x = \sin(u_1) \cdot k_p \cdot u_2^2$
Welcher Kippwinkel u_1^{ss} und vschweben bleibt?	= = = = = = = = = = = = = = = = = = = =	ss müssen eingestellt werden, d	amit der Helikopter auf der Stelle
(a) $u_1^{\text{ss}} = 0,$ $u_2^{\text{ss}} = \sqrt{\frac{m \cdot g_m}{k_p}}$	$\begin{array}{c c} (b) & u_1^{ss} = 0, \\ u_2^{ss} & \frac{m \cdot g_m}{k_p} \end{array}$	(c) $u_1^{ss} = 45^{\circ},$ $u_2^{ss} = 0$	$(d) \qquad u_1^{\text{ss}} = -45^{\circ},$ $u_2^{\text{ss}} = \sqrt{\frac{m \cdot g_m}{k_p}}$

9. Welche Lösung x(t) hat die Differentialgleichung $\dot{x}(t)=3x(t)-u(t)$ mit dem Anfangswert x(0)=4?

(a)	(b) $-u(t) + \int_0^t 3x(\tau)d\tau$
(c) $4e^{3t} - e^{3t} \int_0^t e^{-\tau} u(\tau) d\tau$	(d)