$$
\begin{aligned}
& \text { Win } \quad \sum_{k=0}^{N-1} v_{k}^{2} \\
& v_{0}, \ldots, v_{N M} \\
& x_{0}, \ldots, x_{N} \\
& \text { s.t. } x_{0}=\bar{x}_{0} \text {, } \\
& x_{k+1}=F_{n}\left(x_{k}, u_{k}\right), \quad k=0,00, N-1 \\
& x_{N}=\bar{x}_{N} \\
& \tilde{x}_{k+1}(u)=F_{n}\left(\tilde{x}_{k}(u), u_{k}\right) \\
& \tilde{x}_{0}(u)=\bar{x}_{0} \\
& \begin{aligned}
\min _{u_{0}, \ldots, J_{N-1}} & \sum_{k=0}^{N-1} u_{k}^{2} \\
\text { s.t. } & \tilde{x}_{N}(u)=\bar{x}_{N}
\end{aligned} \\
& \min f(x) \\
& \text { s.t. } \quad C_{i}(x)=0, \quad i \text { e } \varepsilon \\
& c_{i}(x) \geqslant 0, \quad i \in J \\
& \left.\begin{array}{ll}
f(x) & \text { ronvex } \\
c_{i}(x) & i \in \varepsilon \text { affin } \\
c_{i}(x) & i \in \sum \text { concave }
\end{array}\right\} \Rightarrow N L P \text { convex }
\end{aligned}
$$

$$
x^{2} \quad 5 \cdot x^{2}+1
$$

$$
x_{2}=x_{1}^{2}
$$

$$
x \in \mathbb{R}^{2}
$$

$$
x_{2} \geqslant x_{1}^{2}, \hat{}
$$

$$
f(x)=A x+b
$$

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

$$
A x+b=0
$$

$$
c_{1}(x)=x_{2}-x_{1}^{2} \quad(\geq 0)
$$

