
Workshop — Doktorand:innenseminar — SPP 2364

Nonlinear Optimization and Direct Optimal Control for Practitioners

Katrin Baumgärtner, Florian Messerer, Prof. Dr. Moritz Diehl

The aim of this workshop is to give you some hands on experience on methods and in particular software
for numerical simulation and optimal control. The workshop exercises are based on python, CasADi, and
acados. If you have problems following the installation instructions, don’t hesitate to reach out!

Prerequisites and installation instructions

The following steps will get you started for the exercise sessions.

1. Install VSCode and Docker Desktop

2. Install the app Dev Containers in VSCode: Open the Extension Marketplace, search and install Dev
Containers.

3. Download and unpack the attached zip folder template-casadi-acados-course from the course page.

4. Start VSCode with template-casadi-acados-course as the root folder:

• A message should appear on the bottom right corner asking you to build the container. Alter-
natively, you can open the Command Palette of VSCode and type in Dev Container: Rebuild
and Reopen in Container.

• Click on it to start building the image and wait until the container runs. Depending on your
CPU and internet connection, the process can take several minutes. You can check that you are
running the dev container by looking to the bottom left corner where a green field should state
Dev Container:

About CasADi

The open-source tool CasADi1 implements algorithmic differentiation on user-defined symbolic expressions
and provides standardized interfaces to a variety of numerical routines: simulation and optimization, and
solution of linear and nonlinear equations. A key feature of these interfaces is that every user-defined
CasADi function passed to a numerical solver automatically provides the necessary derivatives to this
solver, without any additional user input. Often, the result of the numerical solver itself can be interpreted
as a differentiable CasADi function, such that derivatives up to any order can be generated without actually
differentiating the source code of the solver. Thus, concatenated and recursive calls to numerical solvers
are possible and still result in differentiable CasADi functions. CasADi is written in C++, but allows user
input to be provided from either C++, python, Octave or MATLAB. One particularly powerful optimization
solver interfaced to CasADi is IPOPT2, which is automatically provided in the standard CasADi installation.

1J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl. CasADi – a software framework for nonlinear
optimization and optimal control. Mathematical Programming Computation, 11(1):1–36, 2019

2Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Mathematical Programming, 106(1):25–57, 2006

https://code.visualstudio.com/
https://docs.docker.com/desktop/
https://code.visualstudio.com/docs/editor/extension-marketplace

About acados

acados3 is a software package for the efficient online solution of optimal control and estimation prob-
lems. It provides a collection of computationally efficient building blocks tailored to optimal control and
estimation problems. Among others, it implements: modules for the integration of ordinary differential
equations (ODE) and differential-algebraic equations (DAE), interfaces to state-of-the-art QP solvers like
HPIPM, qpOASES, DAQP, qpDUNES and OSQP, condensing routines and nonlinear programming solvers based
on the real-time iteration framework. The back-end of acados uses the high-performance linear algebra
package BLASFEO to boost computational efficiency for small to medium scale matrices typical of embedded
applications. MATLAB, Octave and python interfaces can be used to conveniently describe optimal control
problems and generate self-contained C code that can be readily deployed on embedded platforms.

3Robin Verschueren, Gianluca Frison, Dimitris Kouzoupis, Jonathan Frey, Niels van Duijkeren, Andrea Zanelli, Branimir
Novoselnik, Thivaharan Albin, Rien Quirynen, and Moritz Diehl. acados – a modular open-source framework for fast embedded
optimal control. Mathematical Programming Computation, pages 147–183, Oct 2021

Workshop — Doktorand:innenseminar — SPP 2364

Part 1: Nonlinear Optimization

Katrin Baumgärtner, Florian Messerer, Prof. Dr. Moritz Diehl

The following exercise has been part of the SPP 2364 online workshop on “Nonlinear Optimization and
Direct Optimal Control”. If you followed the workshop and/or have some experience with CasADi already,
feel free to skip this exercise and continue directly with Part 2.

If you haven’t used CasADi yet, take some time reading its documentation before starting with the
exercise.

Within a production process, five spheres si with i = 1, . . . , 5 shall be cut out from a quadratic plate
with egde size a = 10cm. Three of those spheres shall be of radius R and two of radius 2R. The objective
is to maximize the radius R. The center of each sphere si can be expressed in Cartesian coordinates (xi, yi)
on the plate, and are to be optimized in addition to the radius R. The spheres may not lie outside of the
plate or overlap each other. To ensure this, the minimum distance between the centers of all spheres from
each other as well as the edges of the plate must enter the constraints of the optimization problem. A
depiction of a possible but suboptimal solution with R = 1 is given in Figure 1.

Figure 1: Graphical depiction of a possible, but suboptimal solution with R = 1.

The problem can be formulated as a nonlinear program in CasADi and solved using IPOPT, where the
following sets of constraints enters the optimization problem:

(a) The radii of two of the spheres must be twice a big as the radii of the three other spheres, and must
therefore fulfill the condition

ri = R, i = 1, . . . , 3, (1)

rj = 2R, j = 4, 5. (2)

(3)

(b) The minimum distance of the x-coordinate of any sphere from the left egde and the right edge of
the plate must be greater or equal than its radius ri, the same must hold for the distance of the

https://www.syscop.de/event/nonlinear-optimization-and-direct-optimal-control-practitioners
https://www.syscop.de/event/nonlinear-optimization-and-direct-optimal-control-practitioners
https://web.casadi.org/docs/

y-coordinate from the top edge and bottom edge of the plate.

xi − ri ≥ 0, i = 1, . . . , 5, (4)

xi + ri ≤ a, i = 1, . . . , 5, (5)

yi − ri ≥ 0, i = 1, . . . , 5, (6)

yi + ri ≤ a, i = 1, . . . , 5, (7)

(8)

(c) The distance of the centers of two spheres must be greater or equal to the sum of both spheres’ radii,
which can be expressed simply by using the Pythagorean theorem as

(xi − xj)
2 + (yi − yj)

2 − (ri + rj)
2 ≥ 0, i = 1, . . . , 4, j = i+ 1, . . . , 5. (9)

Tasks

1. Complete the template provided for this task with the information given above and run the script.
On success, you should see a plot that depict the positioning of the spheres on the plate, and they
should neither overlap nor lie outside the plate. How big is R if you use the initial guesses for the
circles coordinates that are already contained in the template?

2. Looking at the plot, could you think of a distribution for the spheres that might lead to even bigger
values for R? Try setting different initial guesses for the spheres’ center coordinates, and write down
your best solution for R.

3. Check whether the gradient of the Lagrangian is indeed zero at the solution you computed.
Hint: You might want to find out how solver.get_function() works.

Workshop — Doktorand:innenseminar — SPP 2364

Part 2: Numerical Simulation

Katrin Baumgärtner, Florian Messerer, Prof. Dr. Moritz Diehl

In this and all following exercises, we consider a nonlinear continuous stirred-tank reactor (CSTR).
In particular, we would like to compare the performance of different integrators in terms of simulation
accuracy and computation time.

An irreversible, first-order reaction A → B occurs in the liquid phase and the reactor temperature
is regulated with external cooling. Mass and energy balances lead to the following nonlinear state space
model:

ċ =
F0(c0 − c)

πr2h
− k0 exp

(
− E

RT

)
c

Ṫ =
F0(T0 − T)

πr2h
− ∆H

ρCp
k0 exp

(
− E

RT

)
c+

2U

rρCp
(Tc − T)

ḣ =
F0 − F

πr2

with states x = (c, T, h) where c is the concentration of substance A, T is the reactor temperature and h
is the height. The controls u = (Tc, F) are the coolant liquid temperature Tc and the outlet flowrate F .

1. Complete the provided template with your own implementation of a Runge-Kutta integrator of order
4 with one step per integration interval and run the script. Do the results look reasonable? Do the
results change if you perform 100 integration steps per interval?

2. Complete the provided template for using the CasADi interface to the integrator CVodes. Compare
the simulated trajectories as well as the computation time with your own implementation of the RK4
integrator.

3. Change the initial state to x0 = (1.141, 97, 0.01) and try to run the simulation again. What happens?
Can you explain these results by analyzing the system dynamics? What conclusions do you draw
regarding the optimal control problem you would formulate to control the above system?

Workshop — Doktorand:innenseminar — SPP 2364

Part 3: Direct Optimal Control with CasADi (and acados)

Katrin Baumgärtner, Florian Messerer, Prof. Dr. Moritz Diehl

In this exercise, we implement an NMPC controller for the nonlinear continuous stirred-tank reactor
(CSTR) using CasADi (and acados). We aim at tracking a reference xref and uref using a tracking cost of
the form

l(x, u) =
1

2
∥x− xref∥2Q +

1

2
∥u− uref∥2R, E(x) =

1

2
∥x− xref∥2P (10)

with weighting matrices Q, R and P .

1. Fill in the gaps in the provided template specifying (a) the stage cost, (b) terminal cost and (c) the
state bounds (having in mind the previous exercise).

2. Formulate the discrete-time optimal control problem using direct collocation and an implicit Euler
scheme. Run the script to see how your controller performs in closed-loop. How does the behaviour
of the closed-loop system change if you adapt the weighting matrices Q and R?

For a single integration step, the problem is given as:

min
x, u, k

N−1∑
n=0

l(xn, un) + E(xN)

s.t. x0 = x̄0,

xn+1 = xn +∆t kn, n = 0, . . . , N − 1,

kn = f(xn+1, un), n = 0, . . . , N − 1,

umin ≤ un ≤ umax, n = 0, . . . , N − 1,

xmin ≤ xn ≤ xmax, n = 0, . . . , N.

(11)

3. Plot the sparsity pattern of the Hessian of the Lagrangian of the optimal control problem. How many
structural zeros does it include? (What are structural zeros?)
Hint: You might want to use solver.get_function().

4. Similarly, formulate a discrete-time optimal control problem using the multiple shooting formulation
and where the discrete-time dynamics are given by your RK4 integrator.

min
x, u

N−1∑
n=0

l(xn, un) + E(xN)

s.t. x0 = x̄0,

xn+1 = ϕ(xn, un), n = 0, . . . , N − 1,

umin ≤ un ≤ umax, n = 0, . . . , N − 1,

xmin ≤ xn ≤ xmax, n = 0, . . . , N,

(12)

5. How many optimization variables are there in the collocation and multiple shooting formulation?
How does this number change if you change the number of integration steps?

6. (*) Complete the template for a NMPC controller using acados and compare your results in terms
of closed-loop control performance and computation time.

7. (*) Play around with some of the controller parameters, e.g. maximum number of iterations, horizon
length, etc. How is the control performance and the computation time affected by these changes?

