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Exercises for Lecture Course on Numerical Optimal Control (NOC)
Albert-Ludwigs-Universität Freiburg – Winter Term 2024 / 25

Exercise 2: Nonlinear Optimization and Newton-type Methods

Prof. Dr. Moritz Diehl, Florian Messerer, Andrea Zanelli, Dimitris Kouzoupis, Yizhen Wang

In this exercise we will start using solvers for nonlinear and nonconvex optimization problems and
we will implement a simple Newton-type algorithm for unconstrained problems.

1. The Rosenbrock problem. Consider the following unconstrained optimization problem:

min
x,y

f(x, y) := (1− x)2 + 100(y − x2)2. (1)

Such a problem is commonly referred to as Rosenbrock problem. Have a look at the script
provided with this exercise that formulates (1) using CasADi and solves it with the solver for
nonlinear nonconvex optimization problems IPOPT. In this exercise we will implement a simple
Newton-type algorithm that can be used to solve such a problem.

(a) Compute on paper the gradient of f and its Hessian.

(b) Implement two functions that take as input arguments x and y and return ∇f(x, y) and
∇2f(x, y) respectively.

(c) To simplify notation we introduce w = (x, y). We now want to numerically solve the op-
timization problem by finding a point w∗ at which ∇f(w∗) = 0. Implement the following
Newton-type method:

wk+1 = wk −M−1
k ∇f(wk), (2)

where M ≈ ∇2f(wk) is an approximation of the exact Hessian. Test your implementation
with two different Hessian approximations: i) Mk = ρI2, with I2 ∈ R2×2 the identity matrix,
for different values of ρ ∈ R++ and ii)Mk = ∇2f(wk). Initialize the iterates at w0 = (1, 1.1)T

and run the algorithm for 1000 iterations. Plot the iterates in the x-y space. When using the
fixed Hessian approximation, does the algorithm converge for ρ = 100? And for ρ = 500?

(d) Use now CasADi to compute the gradient and Hessian of f and use it in your implementation
of the Newton method.

Hint: once you have created a CasADi expression, you can compute its Jacobian and Hessian
calling the CasADi functions jacobian and hessian:

1 % MATLAB
2 import casadi.*
3 x = MX.sym('x',2,1);
4 expr = sin(x(1))*x(2);
5 j expr = jacobian(expr,x);
6 J = Function('J', {x}, {j expr});
7 % hessian() returns only hessian
8 % expression.
9 h expr = hessian(expr, x);

10 H = Function('H', {x}, {h expr});

1 # Python
2 import casadi as ca
3 x = ca.MX.sym('x',2,1)
4 expr = ca.sin(x[0])*x[1]
5 j expr = ca.jacobian(expr, x)
6 J = ca.Function('J', [x], [j expr])
7 # hessian() returns gradient
8 # expression as the second value.
9 h expr, = ca.hessian(expr, x)

10 H = ca.Function('H', [x], [h expr])
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2. A simple dynamic optimization problem. Consider the problem of finding the optimal way
of throwing two balls from different locations such that their distance after a fixed time T is
minimized.

The state xi of each ball is given by its position and velocity in y- resp. z-direction, i.e., xi =
(piy, piz, viy, viz), for i = 1, 2. The overall system state consists of the two ball states, i.e., x =
(x1, x2). The two balls are subject to to drag forces with drag coefficients d1 and d2, side wind w,
and gravitational acceleration g. Thus, the dynamics can be modelled by the differential equation

ṗ1y = v1y, ṗ2y = v2y,

ṗ1z = v1z, ṗ2z = v2z,

v̇1y = −(v1y − w)
∥∥v1 − [w, 0]T

∥∥ d1, v̇2y = −(v2y − w)
∥∥v2 − [w, 0]T

∥∥ d2
v̇1z = −v1z

∥∥v1 − [w, 0]T
∥∥ d1 − g, v̇2z = −v2z

∥∥v2 − [w, 0]T
∥∥ d2 − g.

(3)

The initial state of the system is xs = (xs
1, x

s
2) with xs

i = (psi, v
s
i ), i = 1, 2. Our decision variables

are the initial velocities vs = (vs1, v
s
1). The initial positions are fixed and given. The final positions,

resulting from simulating system (3) over fixed time span T , are denoted by pfi(v
s
i ). Note that

since the balls do not interact, their dynamics are independent of each other. For this simulation
we use the explicit RK4 integrator.

We want to find the initial velocity vs, such that the final distance between the balls is minimal,

min
vs

∥∥pf1(vs1)− pf2(v
s
2)
∥∥2

2
(4a)

s.t. pf1z(v
s
1) ≥ 0, ∥vs1∥

2
2 ≤ v̄2, (4b)

pf2z(v
s
2) ≥ 0, ∥vs2∥

2
2 ≤ v̄2, (4c)

where additional constraints have been added to the formulation to limit the initial throwing
speeds ∥vi∥ and to ensure that the balls have to be above ground at time T (due to the dynamics
of the system, this implies that the balls are above ground at every time t ∈ [0, T ]).

(a) A template MATLAB/Python function that takes the initial velocities of the balls as an
input and returns the final position at time T is provided with this exercise. This function
can be used both with numerical and CasADi symbolic inputs. Complete the provided
template and use it to generate a CasADi expression for pf(vs). Use N = 100 equidistant
intermediate steps and T = 0.5 s. Set d1 = 0.1m−1, d2 = 0.5m−1 and w = 2m/s.

(b) Using CasADi, formulate the described dynamic optimization problem (4) and solve it
using IPOPT. Fix v̄ = 15m/s and ps1 = (0, 0), ps2 = (10, 0). Once you have solved the
optimization problem, simulate the system for the optimal initial velocities and plot the
resulting trajectories in space.

Hint: you can have a look at the constrained Rosenbrock example provided with this exercise
to learn how to formulate constrained problems in CasADi.

(c) [Bonus ] Consider the case where there is no drag (d1 = d2 = 0m−1). What kind of
optimization problem does (4) become?

(d) [Bonus ] Change (4) to an unconstrained problem by removing the constraints. Set ∥vs1∥2 =
v̄ and ∥vs2∥2 = v̄ and reformulate (4) such that the throwing angles α1 := arccos(vs1y/ ∥vs1∥)
and α2 := arccos(−vs2y/ ∥vs2∥) are the only decision variables. In this way an unconstrained
two-dimensional dynamic optimization problem is obtained. Use the Newton-type method
implemented at point 1.c to solve this problem.
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