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The aim of this sheet is to strengthen your knowledge in least squares estimation and introduce some
basic properties about quadratic functions and how they relate to weighted linear least-squares.

Exercise Tasks

1. On Paper: We would like to estimate a constant θ0 ∈ R that is corrupted by additive
zero-mean Gaussian noise, i.e. we assume the following model

y(k) = θ0 + ϵ(k), k = 1, . . . , N

where ϵ ∼ N (0, σ2
ϵ ). To this end, we use regularized linear least-squares, i.e. we compute the

estimate θ̂R given by

θ̂R = argmin
θ∈R

1

2
∥y − Φθ∥22 +

α

2
∥θ∥22

where θ ∈ R, Φ = (1, . . . , 1)⊤ ∈ RN×1 and α > 0. From the lecture, we know that the solution
to this optimization problem is given by

θ̂R =
(
Φ⊤Φ + αI

)−1
Φ⊤y

(a) Calculate the expected value E{θ̂R} of θ̂R. Is the estimator unbiased and/or asymptoti-
cally unbiased?
Hint: Check Section 4.5.1. of the lecture notes. (1 points)

(b) Calculate the variance var(θ̂R) of θ̂R. Compare with the unregularized case, i.e. α = 0.
Hint: Check Section 4.5.2. of the lecture notes. (1 points)

2. You are given the following ill-posed Linear Least-Squares problem:

θ̂ = argmin
θ∈R
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 ∈ R9×2 θ ∈ R2

In the Python script you will find code that visualizes the minimization problem in 3D.

(a) On Paper: Why is this an ill-posed problem? What issue do you run into when following
the usual LLS approach of θ̂ = (Φ⊤Φ)−1Φ⊤y ? (0.5 points)

(b) On Paper: Which two approaches do you know to solve this issue? (0.5 points)

(c) Code: Find a θ̂ using both methods from (b). Use α = 0.2. (1 point)

(d) On Paper: The original minimization problem is visualized in a figure with the two
solutions (your θ̂ from the previous task) as red x. Why do the solutions end up where
they are? Give a reason for each solution! (1 point)
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3. Recall the resistance estimation example from the last exercise sheet. Again, we consider the
following experimental setup, to find the values of the parameters R and E:

i(k)

R

+ −
E

V

u(k)

We assume that only our measurements of the voltage are corrupted by noise, i.e. we make
the following model assumption:

u(k) = R · i(k) + E + nu(k)

where nu(k) ∼ N (0, σ2
u(k)) follows a zero-mean Gaussian distribution. You are given the data

of Ne students, each of them performed the same experiment where they measured the voltage
u(k) for increasing values of i(k), k = 1, . . . , Nm.

Unfortunately, the fan of your measuring device is broken. Thus, it starts heating up over the
course of the experiment which decreases the accuracy of your measurements such that later
measurements are much noisier than earlier ones.

(a) On Paper: In the template we already provided a plot showing the measurements from
all students. What do you observe?

To account for the decreasing accuracy of your measuring device, you decide to assume
that the noise variance σ2

u(k) is proportional to the timestep k, i.e.

σ2
u(k) = c · k, k = 1, . . . , Nm,

where c is a constant. How do you make use of this assumption to modify the LLS
estimator? (1 point)

(b) Code: For student 1, perform both linear least-squares (LLS) and weighted linear least-
squares (WLS) to obtain estimates of the parameter θ = [R,E]⊤. Plot the data of
student 1, as well as the fit obtained from LLS and WLS in a single figure. Hint: for
coding purpose, you can compute the weighting matrix assuming that c = 1. (0.5 points)

(c) On Paper: Which estimator fits better and why? (0.5 points)

(d) Code: For each student d = 1, . . . , Ne, compute θ
(d)
LLS and θ

(d)
WLS. (0.5 points)

(e) Code: Estimate the mean and covariance matrix of the random variables θLLS and θWLS

by calculating the sample mean θ̄∗LS = 1
Ne

∑Ne

d=1 θ
(d)
∗LS and the sample covariance matrix

Σ∗LS that is given by

Σ∗LS =
1

Ne − 1

Ne∑
d=1

(
θ
(d)
∗LS − θ̄∗LS

)(
θ
(d)
∗LS − θ̄∗LS

)⊤
.

Here ∗LS refers to LLS and WLS. (0.5 points)

(f) Code: Plot θ
(d)
LLS and θ

(d)
WLS, d = 1, . . . , Ne, where the x-axis corresponds to the estimated

R0 values and the y-axis corresponds to the estimated E0 values. Plot the mean and
1σ-confidence ellipsoids for both θLLS and θWLS in the same figure. (1 point)

(g) On Paper: What do you observe? (1 point)

(h) On Paper: In part (a) we assumed that the noise is proportional to k. Does θWLS

depend on the choice of the proportionality factor c? Why (not)? (2 bonus points)

This sheet gives in total 10 points and 2 bonus points.
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