
Exercises for Lecture Course on Modeling and System Identification (MSI)
Albert-Ludwigs-Universität Freiburg – Winter Term 2024-2025

Exercise 6: Recursive Least Squares
(to be returned on Dec 9th, 8:15)

Prof. Dr. Moritz Diehl, Katrin Baumgärtner, Jakob Harzer, Dan Wang,
Ashwin Karichannavar, Premnath Srinivasan

In this exercise you will implement a Recursive Least Squares (RLS) estimator and a forward
simulation of a differential drive robot with unicycle dynamics. We will apply the RLS algorithm to
position data of a 2-DOF movement in the X-Y plane, measured with a sampling time of 0.0159 s.

1. Recursive Least Squares applied to position data

In this task you will implement the Recursive Least Squares (RLS) algorithm in PYTHON
and tune the forgetting factors. We approximate the position data by a fourth order poly-
nomial in order to obtain a linear-in-the-parameters (LIP) model. You can assume that the
noise on the X and Y measurements is independent. The experiment starts at t = 0 s.

(a) Code: Fit a 4-th order polynomial through the data using linear least-squares. Plot the
data and the fit for the X- and Y-coordinate.
Hint: You need one estimator for each coordinate.
Paper: Does the fit seem reasonable? Why do you think that is? (1 point)

(b) Code: Implement the RLS algorithm as described in the script (Check section 5.3.1) to
estimate 4-th order polynomials to fit the data. Do not use forgetting factors yet. Plot
the result against the data on the same plot as the previous question.
Paper: Compare the LS estimator from (a) with the RLS estimator you obtain after
processing N measurements. Please give an explanation for your observation. (2 points)

(c) Code: Add a forgetting factor α to your algorithm and try different values for α. Plot
the results against the data.
Paper: How does α influence the fit? What is a reasonable value for α? (1 point)

(d) Paper: How can you compute the covariance Σp of the position, if you know the covari-
ance of the estimator Σθ̂?

Hint: For a random variable γ = Aθ, where A is a matrix, cov(γ) = Acov(θ)AT. (1
point)

(e) Code: Compute the one-step-ahead prediction at each point (i.e. extrapolate your
polynomial fit to the next time step). We also provided code to plot the 1-σ confidence
ellipsoid around this point, and the data.

Paper: Do the confidence ellipsoids grow bigger or smaller as you take more measure-
ments? Why do you think that is? (2
points)

2. Covariance approximation
Consider a nonlinear function f : Rn → R that maps a random vector X = (X1, . . . , Xn)

⊤ to
a scalar random variable Y , i.e.

Y = f(X) = f(X1, . . . , Xn).

We have E{X} = µx = (µ1, . . . , µn)
⊤ and cov(X) = Σx ∈ Rn×n.

1



(a) Paper: Give an approximation of the expected value E{Y } and the covariance matrix
cov(Y ) of Y using a first order Taylor expansion of f around µx. (2 points)

(b) Paper: Suppose X1, . . . , Xn are independent. Simplify your covariance approximation
from part (a). (1 point)

This sheet gives in total 10 points

2


