
Exercises for Course on Modeling and System Identification (MSI)
Albert-Ludwigs-Universität Freiburg – Winter Term 2024-2025

Exercise 8: Nonlinear Least Squares
(to be returned on Jan 13th, 8:15)

Prof. Dr. Moritz Diehl, Katrin Baumgärtner, Jakob Harzer, Dan Wang,
Ashwin Karichannavar, Premnath Srinivasan

In this exercise you will learn how to practically solve nonlinear least squares problems, compute
estimates of the covariance of your estimated parameters and make statements about the correctness
of the model assumptions.

Parameter estimation for output error minimization

In this exercise we will consider the model of a differential drive robot with unicycle dynamics. The
movement of the robot depends on the angular velocities of the left and the right wheel ωL and ωR,
as well as on their radii RL and RR. Differing radii influence the behaviour of the robot.

v

x

y

β

The system can be described by a state space model with three internal states. The state vector
x = [x, y, β]⊤ contains the position of the robot in the X − Y plane and the deviation β from
its initial orientation. The system can be controlled by the angular velocities of the wheels: u =
[ωL, ωR]

⊤. The output of the system is the position of the robot: y = [x, y]⊤. The model follows
as

ẋ =

 v · cos β
v · sin β

ωLRL−ωRRR

L

 y =

[
x
y

]
(1)

with L being the length of the axis between the two wheels and the velocity v being

v =
ωL ·RL + ωR ·RR

2
.

The system state is x = [x, y, β]⊤ and is equal to the robot’s pose. The system can be controlled
by the angular velocities of the wheels: u = [ωL ωR]

⊤. The output y is the position of the robot
and measured with a sampling time of ∆t = 0.01 s.

We already provided you some functions to simulate the position of the two-wheel-robot using
the state space model. For reference use chapter 6.2 ’Numerical Integration Methods’ from the
lecture notes. Please go through all of the provided functions and try to understand what they are
doing.

� robot_ode(x,u,p) evaluates the right-hand side of the ODE ẋ = f(x, u, p), with parameters
p = [RL, RR, L]. Use the following values: RL = 0.2 m, RR = 0.2 m and L = 0.6 m.

1



� euler_step(h, x0, u, ode, p) performs one Euler integration step for a general ODE ẋ =
f(x, u, p) starting at x0, with input u, parameters p and step size h.

� sim_euler(t,x0, u, ode, p) simulates the robot’s behaviour at times t given a set of inputs
u, starting at x0 = [0 0 0]⊤.

In this task, we would like to estimate the dimensions of the robot θ = [RL, RR, L]
⊤ using least

squares. Assuming that the robot system has only output errors, and that these errors are Gaussian
with zero mean and variances σ2

x = 1.6·10−3 m2 and σ2
y = 4·10−4 m2, then the Maximum Likelihood

Estimation problem to estimate θ is:

θ∗ = argmin
θ∈R3

N∑
k=0

∥yk −Mk(U,x0, θ)∥2Σ−1
y
,

where yk = (x, y)⊤ ∈ R2 with x and y being the coordinates of the robot and N is the number of
measurements; Σy is the weighing matrix containing the variances on the x and y measurements,

Σy =

[
σ2
x 0
0 σ2

y

]
;

Mk(U,x0, θ) denotes the modeled position at timestep k for given U,x0, θ where U ∈ R(N−1)×2

is a matrix that contains all applied control inputs u1, . . . , uN−1, each consisting of the angular
velocity of the left and right wheel respectively (ωL and ωR); x0 contains the robot’s initial pose
x0 = [x0, y0, β0]

⊤ = [0, 0, 0]⊤ which we assume to be perfectly known.

1. On Paper: Formulate the output model

Mk : R(N−1)×2 × R3 × R3 → R2, (U,x0, θ) 7→ ŷk

where you may use a function F : R3 × R2 × R3 → R3 to denote the discretized system
dynamics describing the mapping (xk, uk, θ) 7→ xk+1. (2 point)

2. Code: Implement a function

residual(theta, x0, U, t, y, sigma_y)

which computes the residual vector between the given measured locations [y0,y1, . . . ,yN ]
⊤

and the modeled locations [M0,M1, . . . ,MN ]
⊤. Keep in mind to incorporate the measurement

variances Σy correctly, i.e. weight the residual and to perform the right number of integration
steps. Check the provided code for additional information on the parameters. (1 point)

3. Code: Use least squares in package scipy.optimize to solve the nonlinear least-squares
problem to obtain θ∗. 1 (1 point)

4. Code: Compute the simulated trajectory using θ∗ and use the provided code to plot it versus
the measurements and a 4th order polynomial fit.
On Paper: What do you observe? (1 point)

5. On Paper: Check if the assumptions made on the noise were correct by plotting a histogram
for the residual in x and y (using θ∗). (1 point)

6. Code: Approximate the covariance matrix Σθ∗ of your estimate θ∗ (check page 52 of the
lecture notes). (2 points)

1least squares takes as input a vector function f(θ) = [f1(θ), . . . , fN (θ)], and minimizes 1
2∥f(θ)∥

2
2 with respect

to θ. Thus, you have to stack the residuals obtained for different timesteps to obtain a single residual vector.

2



7. On Paper: Suppose you have identified the robot’s kinematic model as done in this task.
You are now given another series of controls U ∈ R(N−1)×2 and are asked to predict the robot’s
end pose and to give an estimate for the covariance matrix ΣŷN

of your prediction. Describe
how this can be done. You may use any result or quantity introduced or computed in the
previous tasks. (2 points)

3


