
IPIANO: INERTIAL PROXIMAL ALGORITHM
FOR NON-CONVEX OPTIMIZATION

Peter Ochs

University of Freiburg
Germany

17.01.2017

joint work with: Thomas Brox and Thomas Pock

c© 2017 — Peter Ochs iPiano c© 1 / 28

Overview

What can you expect from this talk:
I First order optimization algorithms.

I Motivation from computer vision, but results are abstract/not application specific.

I Main focus is on certain non-smooth non-convex optimization problems.

I Non-smooth analysis is required for the details.
For intuition, smooth analysis is sufficient.

Overview:
I Motivation for inertial methods.

I Algorithm for a class of non-smooth non-convex optimization problems: iPiano.

I Application examples.

I Convergence analysis.

c© 2017 — Peter Ochs iPiano c© 2 / 28

Gradient descent dynamical system

I Smooth optimization problem:
min
x∈RN

f (x) .

I Consider the (time-continuous) gradient descent dynamical system

Ẋ(t) = −∇f (X(t)) .

I Solution is a curve X : [0,+∞)→ RN with time-derivative Ẋ(t).
I Objective values are non-increasing.

c© 2017 — Peter Ochs iPiano c© 3 / 28

Gradient descent dynamical system

I Smooth optimization problem:
min
x∈RN

f (x) .

I Consider the (time-continuous) gradient descent dynamical system

Ẋ(t) = −∇f (X(t)) .

I Solution is a curve X : [0,+∞)→ RN with time-derivative Ẋ(t).
I Objective values are non-increasing.

c© 2017 — Peter Ochs iPiano c© 3 / 28

Heavy-ball dynamical system

I Heavy-ball dynamical system:

Ẍ(t) = −γẊ(t)−∇f (X(t))

I The system describes the motion of a ball on the graph of the objective function f .

I Ẍ(t) is the second derivative (∼ acceleration). models inertia / momentum.

I −γẊ is a viscous friction force (γ > 0).

c© 2017 — Peter Ochs iPiano c© 4 / 28

Heavy-ball dynamical system

I Heavy-ball dynamical system:

Ẍ(t) = −γẊ(t)−∇f (X(t))

I The system describes the motion of a ball on the graph of the objective function f .

I Ẍ(t) is the second derivative (∼ acceleration). models inertia / momentum.

I −γẊ is a viscous friction force (γ > 0).

c© 2017 — Peter Ochs iPiano c© 4 / 28

Inertial methods can speed up convergence

I Polyak investigates multi-step methods in the paper:

[Some methods for speeding up the convergence of iteration methods. Polyak, 1964].

I A k-step method constructs x(n+1) using the previous k iterations x(n), . . . , x(n−k+1).

I Gradient descent method is a single-step method.

I Inertial methods are multi-step methods.

I Heavy-ball method is a 2-step method.

Evidence in convex optimization:
I Optimal method are usually multi-step methods.
I The Heavy-ball method is optimal for smooth strongly convex functions.

c© 2017 — Peter Ochs iPiano c© 5 / 28

Heavy-ball method

I The (time-discrete) Heavy-ball method has the update rule

x(k+1) = x(k) − α∇f (x(k)) + β(x(k) − x(k−1)) .

I (x(k))k∈N: sequence of iterates.

I α > 0: step size parameter.

I β ∈ [0, 1): inertial parameter.

I For β = 0, we recover the gradient descent method.

Some properties:

I It is not a classical descent method.

I It avoids zick-zacking.

I Similarity to conjugate gradient method.

−∇f (x(1))

β(x(1) − x(0))

x(0)
GD,HB

x(1)
GD,HB

x(2)
GD

x(2)
HB

c© 2017 — Peter Ochs iPiano c© 6 / 28

Non-smooth non-convex optimization problems

I Efficiently solving all Lipschitz continuous problems is hopeless [Nesterov, 2004].

I Can take several million years for small problems with only 10 unknowns.

We should exploit the structure of optimization problems

I Develop algorithms for special classes of structured non-convex problems:

smooth, non-convex + non-smooth, non-convex, simplemin

c© 2017 — Peter Ochs iPiano c© 7 / 28

A generic optimization problem

I Non-convex optimization problem with a function h : RN → R (R := R ∪ {+∞})

min
x∈RN

h(x) ; h(x) := f (x) + g(x) .

I g : RN → R proper, lower semi-continuous (lsc), simple, prox-bounded.

I f : RN → R is smooth with L-Lipschitz
continuous gradient on dom g ⊂ RN, i.e.

|∇f (x)−∇f (y)| ≤ L|x−y| , ∀x, y ∈ dom g .
f (x)

x̄

f L(x; x̄)

I h is coercive (|x| → +∞⇒ h(x)→ +∞) and bounded from below

c© 2017 — Peter Ochs iPiano c© 8 / 28

Inertial proximal algorithm for nonconvex optimization

Algorithm. (iPiano, [O., Chen, Brox, Pock, 2014], [O., 2015])
I Optimization problem:

min
x∈RN

f (x) + g(x)

I f has L-Lipschitz continuous gradient
I g proper, lsc, prox-bounded

I Iterations (k ≥ 0): Update (x−1 := x0 ∈ dom g)

x(k+1) ∈ prox
αg

(
x(k) − α∇f (x(k)) + β(x(k) − x(k−1))

)
I Parameter setting: See convergence analysis.

c© 2017 — Peter Ochs iPiano c© 9 / 28

Proximity operator

Proximity operator:
I For a proper, lsc, prox-bounded function g : RN → R and α > 0, define

prox
αg(x̄) := arg min

x∈RN
g(x) +

1
2α
|x− x̄|2 .

I prox
αg : RN ⇒ RN is a set-valued mapping.

I If g is convex, then prox
αg is single-valued.

I If g = δS is the indicator function of a set S, then

prox
αg(x̄) = PS(x̄)

is the projection onto S.

I g is simple, if prox
αg can be efficiently evaluated for a global minimum.

c© 2017 — Peter Ochs iPiano c© 10 / 28

Relationsship to other methods

x(k+1) ∈ prox
αg

(
x(k) − α∇f (x(k)) + β(x(k) − x(k−1))

)
I g = 0 and β = 0: Gradient descent
I g = δC and β = 0: Projected gradient descent [Goldstein ’64], [Levitin, Polyak ’66], . . .
I β = 0: Forward–backward splitting [Lions, Mercier ’79], [Tseng ’91], [Daubechie et al.

’04], [Combettes, Wajs ’05], [Raguet, Fadili, Peyré ’13], [Chouzenoux, Pesquet, Repetti
’14], [Fukushima, Mine ’81], . . .

I g = 0: Gradient descent with momentum or Heavy-ball method [Polyak ’64],
[Zavriev, Kostyuk ’93], [Alvarez ’04], [Alvarez, Attouch ’01], . . .

I f = 0 and β = 0: Instance of the proximal point algorithm [Rockafellar ’76], . . .
I Note the difference to Nesterov’s method [Nesterov ’83]

x(k+1) = x(k) − α∇f (x(k) + βk(x(k) − x(k−1)))) + βk(x(k) − x(k−1))

I Generalization to forward–backward splitting [Beck, Teboulle ’09], [Nesterov ’12], . . .

c© 2017 — Peter Ochs iPiano c© 11 / 28

Diffusion based image compression

Diffusion based image compression:

Encoding:
I store image I0 only in some small number of pixel:

ci = 1 if pixel i is stored and 0 otherwise

Decoding:
I use ui = I0

i for all i with ci = 1
I use linear diffusion in unknown region (ci = 0)

(solve Laplace equation Lu = 0)

⇒ solve for u in

C(u− I0)− (Id−C)Lu = 0

where C = diag(c), and Id the identity matrix

encoding

decoding

c© 2017 — Peter Ochs iPiano c© 12 / 28

Diffusion based image compression

Diffusion based image compression:

Goal:
I Find a sparse vector c that yields the best

reconstruction.

Non-convex optimization problem:
I Math. program with equilibrium constraint

min
c∈RN,u∈RN

1
2
‖u(c)− I0‖2 + λ‖c‖1

s.t. C(u− I0)− (Id−C)Lu = 0

where C = diag(c).
I Can be formulated as

min
c∈RN

1
2
‖A−1CI0 − I0‖2 + λ‖c‖1

where A = C + (C− Id)L.

encoding

decoding

c© 2017 — Peter Ochs iPiano c© 12 / 28

Results for Trui

c© 2017 — Peter Ochs iPiano c© 13 / 28

Results for Trui

c© 2017 — Peter Ochs iPiano c© 13 / 28

Results for Trui

c© 2017 — Peter Ochs iPiano c© 13 / 28

Results for Walter

c© 2017 — Peter Ochs iPiano c© 14 / 28

Results for Walter

c© 2017 — Peter Ochs iPiano c© 14 / 28

Results for Walter

c© 2017 — Peter Ochs iPiano c© 14 / 28

Compressive sensing application

Sparse and Low-rank Matrix Decomposition:

I Let A, X, Y be M×N matrices.

I Find a decomposition
A ≈ X + Y .

I X should have low rank.

I Y should have few non-zero entries.

I Optimization problem:

min
X,Y∈RM×N

1
2
‖A− X − Y‖2

F + rk(X) + ‖Y‖0 .

c© 2017 — Peter Ochs iPiano c© 15 / 28

Basic stability result for iPiano

Define Hδ(x, y) := h(x) + δ|x− y|2, where h(x) = f (x) + g(x) and δ > 0.

I (Hδ(x(k), x(k−1)))k∈N is monotonically decreasing and thus converging:

Hδ(x(k+1), x(k)) ≤ Hδ(x(k), x(k−1))− γ|x(k) − x(k−1)|2 for some γ > 0 .

c© 2017 — Peter Ochs iPiano c© 16 / 28

Discussion about step size parameters

Hδ(x(k+1), x(k)) ≤ Hδ(x(k), x(k−1))− γ|x(k) − x(k−1)|2

I Step size restrictions come from γ > 0.
I Actually, α and β can vary along the iterations.
I Lipschitz constant of∇f can be estimated “locally” using backtracking.
I Later, γ and δ and the norm can vary along the iterations [O., 2016].

I General case:
0 < α <

(1− 2β)

L
and β ∈ [0,

1
2

) .

I g semi-convex with modulus m ∈ R (m maximal such that g(x)− m
2 |x|

2 is convex):

0 < α <
2(1− β)

L−m
and β ∈ [0, 1) .

I g convex:

0 < α <
2(1− β)

L
and β ∈ [0, 1) .

c© 2017 — Peter Ochs iPiano c© 17 / 28

Basic convergence resutls for iPiano

Definition:

A point x∗ ∈ dom h is a critical point of h : RN → R, if

0 ∈ ∂h(x∗) (zero of the limiting subdifferential) .

In our case, it is equivalent to
−∇f (x∗) ∈ ∂g(x∗) .

Theorem:

I The sequence (h(x(k)))k∈N converges.

I There exists a converging subsequence (xkj)j∈N.

I Any limit point x∗ := lim
j→∞

xkj is a critical point of h and h(xkj)→ h(x∗) as j→∞.

c© 2017 — Peter Ochs iPiano c© 18 / 28

Full convergence for iPiano

Theorem:

If Hδ(x, y) has the Kurdyka-Łojasiewicz property at a cluster point (x∗, x∗), then

I (x(k))k∈N has finite length, i.e.,
∞∑

k=1

|x(k) − x(k−1)| <∞,

I x(k) → x∗ as k→∞,

I (x∗, x∗) is a critical point of Hδ , and x∗ is a critical point of h.

Kurdyka-Łojasiewicz property:

I Weak assumption about the structure of the objective functions.
I Very hard to find a function that does not have this property.
I Examples on next slide.

c© 2017 — Peter Ochs iPiano c© 19 / 28

Examples of KL functions

I Real analytic functions [Łojasiewicz ’63]
I Differentiable functions that are definable in an o-minimal structure [Kurdyka ’98]
I Non-smooth lsc functions that are definable in an o-minimal structure

[Bolte, Daniilidis, Lewis, Shiota 2007], [Attouch, Bolte, Redont, Soubeyran 2010]
I semi-algebraic functions

(polynomials, piecewise polynomials, absolute value function, Euclidean distance
function, p-norm for p ∈ Q (also p = 0), . . .)

I An o-minimal structure is closed under finite sums and products, composition, and
several other important operations

I Bad news: not all functions are KL functions, [Bolte, Daniilidis, Ley, Mazet 2010]
construct a C2 function in R2 that does not satisfy the KL inequality

I Good news: Such functions are very unlikely to occur in practical applications

c© 2017 — Peter Ochs iPiano c© 20 / 28

Abstract descent algorithms [Attouch et al. 2013]

min
x∈RN

f (x)

I f : RN → R proper, lsc
I (x(k))k∈N sequence of iterates generated by some algorithm
I a, b > 0 fixed

(h1) (Sufficient decrease condition). For each k ∈ N,

f (x(k+1)) + a|x(k+1) − x(k)|2 ≤ f (x(k)) ;

(h2) (Relative error condition). For each k ∈ N, there exists w(k+1) ∈ ∂f (x(k+1)) such
that

|w(k+1)| ≤ b|x(k+1) − x(k)| ;

(h3) (Continuity condition). There exists a subsequence (xkj)j∈N and x̃ such that

xkj → x̃ and f (xkj)→ f (x̃) , as j→∞ .

I These properties are shared by many first-order optimization algorithms.

c© 2017 — Peter Ochs iPiano c© 21 / 28

Direct consequences of the descent property

The following analysis is motivated by [Bolte, Sabach, Teboulle, 2013].

Lemma:

I (f (x(k)))k∈N is non-increasing and converging,

I

k∑
j=1

|x(j+1) − x(j)|2 < +∞ and, therefore |x(k+1) − x(k)| → 0, as k→∞.

c© 2017 — Peter Ochs iPiano c© 22 / 28

Direct consequences for the set of limit points

Define:
I Let ω0 be the set of limit points of a bounded sequence (x(k))k∈N.
I Subset of limit points that allow for subsequences along which f is continuous, i.e.,

ω0 := {x̄ ∈ ω0| x(kj)
f→ x̄ for j→∞} ⊂ ω0 .

Lemma: If f is continuous on dom f , then ω0 = ω0.

From now on, let (x(k))k∈N be a bounded sequence.

Lemma:
I ω0 is non-empty, and ω0 ⊂ crit f .

I ω0 is non-empty, compact, and connected.

I It holds that lim
k→∞

dist(x(k), ω0) = 0.

I F is constant and finite on ω0.

c© 2017 — Peter Ochs iPiano c© 23 / 28

An abstract convergence theorem

Theorem: ([Attouch et al. 2013])

If

I f : RN → R be a proper, lsc,

I (x(k))k∈N satisfies (h1), (h2), and (h3), and

I f has the KL property at the cluster point x̃,

then

I (x(k))k∈N converges to x̄ = x̃,

I x̄ is a critical point of f ,

I (x(k))k∈N has a finite length.

I However, is does not apply to inertial methods directly.

c© 2017 — Peter Ochs iPiano c© 24 / 28

Unifying abstract convergence theorem [O., 2016]

I (u(k))k∈N be a sequence of parameters in RP.
I (εk)k∈N be an `1-summable sequence of non-negative real numbers.
I (ak)k∈N, (bk)k∈N, and (dk)k∈N of non-negative real numbers.

(H1) (Sufficient decrease condition) For each k ∈ N, it holds that

F(x(k+1), u(k+1)) + akd2
k ≤ F(x(k), u(k)) .

(H2) (Relative error condition) For each k ∈ N, the following holds:

bk+1‖∂F(x(k+1), u(k+1))‖− ≤
b
2

(dk+1 + dk) + εk+1 .

(H3) (Continuity condition) ∃((x(kj), u(kj)))j∈N and (x̃, ũ) ∈ RN × RP such that

(x(kj), u(kj))
F→ (x̃, ũ) as j→∞ .

(H4) (Contraction condition) It holds that

|x(k+1) − x(k)|2 ∈ o(dk) and (bk)k∈N 6∈ `1 , sup
k∈N

bkak <∞ , inf
k

ak =: a > 0 .

c© 2017 — Peter Ochs iPiano c© 25 / 28

Abstract Convergence Theorem

Theorem:

If
I F is a proper, lsc, bounded from below, and has the KL property,
I (x(k))k∈N be a bounded sequence generated by an abstract parametrized algorithm,
I with a sequence of parameter (u(k))k∈N,
I ω(x(0), u(0)) = ω(x(0), u(0)),

then
I (x(k))k∈N satisfies

∞∑
k=0

|x(k+1) − x(k)| < +∞ ,

and (x(k))k∈N converges to some x̃.
I Moreover, if (u(k))k∈N is a converging sequence, then ((x(k), u(k)))k∈N F-converges to

(x̃, ũ), and (x̃, ũ) is a critical point of F.

c© 2017 — Peter Ochs iPiano c© 26 / 28

Variable metric iPiano

Non-smoth non-convex optimization problem: (f smooth, g non-smooth)

min
x∈RN

h(x) = min
x∈RN

f (x) + g(x)

Algorithm. (variable metric iPiano, [O., 2016])
I Initialization: Choose a starting point x(0) ∈ dom h and set x(−1) = x(0).
I Iterations (k ≥ 0): Choose Ak ∈ S(N), 0 ≺ Ak � Id, and update:

x(k+1) ∈ (Id +αkA−1
k ∂g)−1

(
x(k) − αkA−1

k ∇f (x(k)) + βk(x(k) − x(k−1))
)
,

where αk, βk, γk, and δk are as in the base variant of iPiano and the following
monotonicity condition holds:

δk+1|x(k+1) − x(k)|2Ak+1
≤ δk|x(k+1) − x(k)|2Ak

.

I Convergence: Same as in the Abstract Convergence Theorem from before.

I Lipschitz constant can be estimated with backtracking.
I Algorithm can be extended to block coordinate version.

c© 2017 — Peter Ochs iPiano c© 27 / 28

Summary

I Heavy-ball dynamical system:

Ẍ(t) = −γẊ(t)−∇f (X(t))

I The (time-discrete) Heavy-ball method has the update rule

x(k+1) = x(k) − α∇f (x(k)) + β(x(k) − x(k−1)) .

I Develop algorithms for special classes of structured non-convex problems:

smooth, non-convex + non-smooth, non-convex, simplemin

I iPiano:
x(k+1) ∈ prox

αg

(
x(k) − α∇f (x(k)) + β(x(k) − x(k−1))

)
I Convergence analysis of iPiano and abstract descent methods.

c© 2017 — Peter Ochs iPiano c© 28 / 28

