IPIANO: INERTIAL PROXIMAL ALGORITHM FOR NON-CONVEX OPTIMIZATION

Peter Ochs University of Freiburg Germany 17.01.2017

< ∃⇒

joint work with: Thomas Brox and Thomas Pock

A (1) > (1) > (1)

Overview

What can you expect from this talk:

- First order optimization algorithms.
- Motivation from computer vision, but results are abstract/not application specific.
- Main focus is on certain non-smooth non-convex optimization problems.
- Non-smooth analysis is required for the details.
 For intuition, smooth analysis is sufficient.

Overview:

- Motivation for inertial methods.
- Algorithm for a class of non-smooth non-convex optimization problems: iPiano.
- Application examples.
- Convergence analysis.

ヘロト 人間 とくほ とくほとう

Gradient descent dynamical system

Smooth optimization problem:

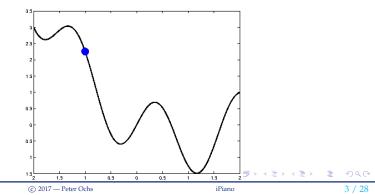
 $\min_{x\in\mathbb{R}^N}f(x)\,.$

Consider the (time-continuous) gradient descent dynamical system

$$\dot{X}(t) = -\nabla f(X(t)) \,.$$

- Solution is a curve $X: [0, +\infty) \to \mathbb{R}^N$ with time-derivative $\dot{X}(t)$.
- Objective values are non-increasing.

[O]Vision



Gradient descent dynamical system

Smooth optimization problem:

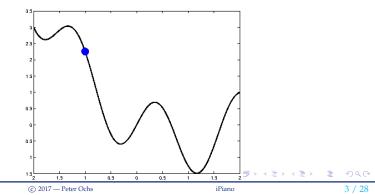
 $\min_{x\in\mathbb{R}^N}f(x)\,.$

Consider the (time-continuous) gradient descent dynamical system

$$\dot{X}(t) = -\nabla f(X(t)) \,.$$

- Solution is a curve $X: [0, +\infty) \to \mathbb{R}^N$ with time-derivative $\dot{X}(t)$.
- Objective values are non-increasing.

[O]Vision



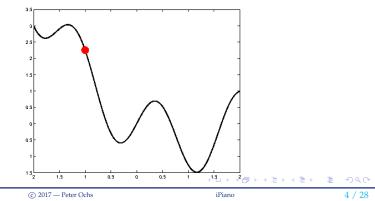
Heavy-ball dynamical system

Heavy-ball dynamical system:

 $\ddot{X}(t) = -\gamma \dot{X}(t) - \nabla f(X(t))$

- The system describes the motion of a ball on the graph of the objective function *f*.
- ▶ $\ddot{X}(t)$ is the second derivative (~ acceleration). \rightarrow models inertia / momentum.
- $-\gamma \dot{X}$ is a viscous friction force ($\gamma > 0$).

[0] Vision

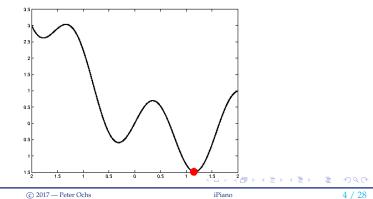


Heavy-ball dynamical system

Heavy-ball dynamical system:

 $\ddot{X}(t) = -\gamma \dot{X}(t) - \nabla f(X(t))$

- The system describes the motion of a ball on the graph of the objective function *f*.
- ▶ $\ddot{X}(t)$ is the second derivative (~ acceleration). \rightarrow models inertia / momentum.
- $-\gamma \dot{X}$ is a viscous friction force ($\gamma > 0$).



[**O**]Vision

Inertial methods can speed up convergence

- Polyak investigates multi-step methods in the paper: [Some methods for speeding up the convergence of iteration methods. Polyak, 1964].
- A *k*-step method constructs $x^{(n+1)}$ using the previous *k* iterations $x^{(n)}, \ldots, x^{(n-k+1)}$.
- Gradient descent method is a single-step method.
- Inertial methods are multi-step methods.
- Heavy-ball method is a 2-step method.

Evidence in convex optimization:

- Optimal method are usually multi-step methods.
- ► The Heavy-ball method is optimal for smooth strongly convex functions.

Heavy-ball method

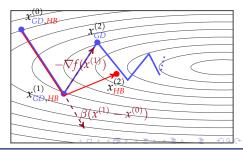
The (time-discrete) Heavy-ball method has the update rule

 $x^{(k+1)} = x^{(k)} - \alpha \nabla f(x^{(k)}) + \beta (x^{(k)} - x^{(k-1)}).$

- $(x^{(k)})_{k \in \mathbb{N}}$: sequence of iterates.
- $\alpha > 0$: step size parameter.
- $\beta \in [0, 1)$: inertial parameter.
- For $\beta = 0$, we recover the gradient descent method.

Some properties:

- It is not a classical descent method.
- It avoids zick-zacking.
- Similarity to conjugate gradient method.



Non-smooth non-convex optimization problems

- ▶ Efficiently solving all Lipschitz continuous problems is hopeless [Nesterov, 2004].
- Can take several million years for small problems with only 10 unknowns.

We should exploit the structure of optimization problems

• Develop algorithms for special classes of structured non-convex problems:

+

min

smooth, non-convex

non-smooth, non-convex, simple

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

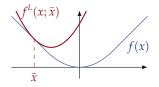
A generic optimization problem

▶ Non-convex optimization problem with a function $h: \mathbb{R}^N \to \overline{\mathbb{R}} \quad (\overline{\mathbb{R}} := \mathbb{R} \cup \{+\infty\})$

 $\min_{x\in\mathbb{R}^N} h(x) ; \qquad h(x) := f(x) + g(x) .$

▶ $g: \mathbb{R}^N \to \overline{\mathbb{R}}$ proper, lower semi-continuous (lsc), **simple**, prox-bounded.

► $f: \mathbb{R}^N \to \mathbb{R}$ is smooth with *L*-Lipschitz continuous gradient on dom $g \subset \mathbb{R}^N$, i.e. $|\nabla f(x) - \nabla f(y)| \le L|x-y|, \quad \forall x, y \in \text{dom } g.$



▶ *h* is **coercive** ($|x| \rightarrow +\infty \Rightarrow h(x) \rightarrow +\infty$) and bounded from below

Inertial proximal algorithm for nonconvex optimization

Algorithm. (iPiano, [O., Chen, Brox, Pock, 2014], [O., 2015])• Optimization problem: $min_{x \in \mathbb{R}^N} f(x) + g(x)$ • Iterations $(k \ge 0)$: Update $(x^{-1} := x^0 \in \text{dom } g)$ $x^{(k+1)} \in \text{prox}_{\alpha g} (x^{(k)} - \alpha \nabla f(x^{(k)}) + \beta(x^{(k)} - x^{(k-1)}))$ • Parameter setting: See convergence analysis.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Proximity operator

Proximity operator:

▶ For a proper, lsc, prox-bounded function $g : \mathbb{R}^N \to \overline{\mathbb{R}}$ and $\alpha > 0$, define

$$\operatorname{prox}_{\alpha g}(\bar{x}) := \arg\min_{x \in \mathbb{R}^N} g(x) + \frac{1}{2\alpha} |x - \bar{x}|^2.$$

•
$$\operatorname{prox}_{\alpha g} \colon \mathbb{R}^N \rightrightarrows \mathbb{R}^N$$
 is a set-valued mapping.

- If g is convex, then $\operatorname{prox}_{\alpha g}$ is single-valued.
- If $g = \delta_S$ is the indicator function of a set *S*, then

 $\operatorname{prox}_{\alpha g}(\bar{x}) = \mathcal{P}_{S}(\bar{x})$

is the **projection onto** *S*.

• *g* is **simple**, if $prox_{\alpha g}$ can be efficiently evaluated for a global minimum.

イロト イポト イヨト イヨト

$$x^{(k+1)} \in \operatorname{prox}_{\alpha g} (x^{(k)} - \alpha \nabla f(x^{(k)}) + \beta (x^{(k)} - x^{(k-1)}))$$

- g = 0 and $\beta = 0$: Gradient descent
- ▶ $g = \delta_{C}$ and $\beta = 0$: Projected gradient descent [Goldstein '64], [Levitin, Polyak '66], ...
- ▶ β = 0: Forward–backward splitting [Lions, Mercier '79], [Tseng '91], [Daubechie et al. '04], [Combettes, Wajs '05], [Raguet, Fadili, Peyré '13], [Chouzenoux, Pesquet, Repetti '14], [Fukushima, Mine '81], ...
- ▶ g = 0: Gradient descent with momentum or Heavy-ball method [Polyak '64], [Zavriev, Kostyuk '93], [Alvarez '04], [Alvarez, Attouch '01], ...
- ▶ f = 0 and $\beta = 0$: Instance of the proximal point algorithm [Rockafellar '76], ...
- ▶ Note the difference to Nesterov's method [Nesterov '83]

 $x^{(k+1)} = x^{(k)} - \alpha \nabla f(x^{(k)} + \beta_k (x^{(k)} - x^{(k-1)}))) + \beta_k (x^{(k)} - x^{(k-1)})$

▶ Generalization to forward-backward splitting [Beck, Teboulle '09], [Nesterov '12], ...

Diffusion based image compression:

Encoding:

▶ store image *I*⁰ only in some small number of pixel: *c_i* = 1 if pixel *i* is stored and 0 otherwise

Decoding:

- use $u_i = I_i^0$ for all *i* with $c_i = 1$
- use linear diffusion in unknown region ($c_i = 0$) (solve Laplace equation Lu = 0)
- \Rightarrow solve for *u* in

 $C(u - I^0) - (\mathrm{Id} - C)Lu = 0$

where C = diag(c), and Id the identity matrix

↓encoding

Diffusion based image compression

Diffusion based image compression:

Goal:

► Find a sparse vector *c* that yields the best reconstruction.

Non-convex optimization problem:

Math. program with equilibrium constraint

$$\min_{c \in \mathbb{R}^{N}, u \in \mathbb{R}^{N}} \frac{1}{2} \|u(c) - I^{0}\|^{2} + \lambda \|c\|_{1}$$

s.t. $C(u - I^{0}) - (\mathrm{Id} - C)Lu = 0$

where C = diag(c).

Can be formulated as

$$\min_{c \in \mathbb{R}^N} \frac{1}{2} \|A^{-1}CI^0 - I^0\|^2 + \lambda \|c\|_1$$

where
$$A = C + (C - \mathrm{Id})L$$
.

↓encoding

iPiano

Results for Trui

[0] Vision

æ

Results for Trui



[0] Vision

Results for Trui

[0] Vision

æ

Results for Walter

[0] Vision

æ

Results for Walter

[0]Vision

Results for Walter

[0] Vision

iPiano

< ≣⇒

Compressive sensing application

Sparse and Low-rank Matrix Decomposition:

- Let A, X, Y be $M \times N$ matrices.
- Find a decomposition

 $A \approx X + Y$.

- *X* should have low rank.
- Y should have few non-zero entries.
- Optimization problem:

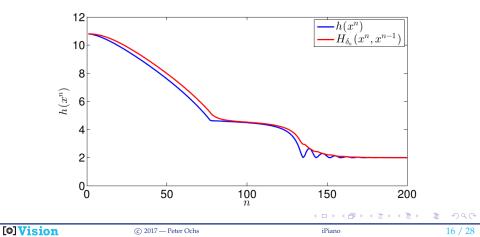
$$\min_{X,Y \in \mathbb{R}^{M \times N}} \frac{1}{2} \|A - X - Y\|_F^2 + rk(X) + \|Y\|_0 \,.$$

Basic stability result for iPiano

Define $H_{\delta}(x, y) := h(x) + \delta |x - y|^2$, where h(x) = f(x) + g(x) and $\delta > 0$.

• $(H_{\delta}(x^{(k)}, x^{(k-1)}))_{k \in \mathbb{N}}$ is monotonically decreasing and thus converging:

 $H_{\delta}(x^{(k+1)}, x^{(k)}) \le H_{\delta}(x^{(k)}, x^{(k-1)}) - \gamma |x^{(k)} - x^{(k-1)}|^2 \quad \text{for some } \gamma > 0 \,.$



Discussion about step size parameters

 $H_{\delta}(x^{(k+1)}, x^{(k)}) \le H_{\delta}(x^{(k)}, x^{(k-1)}) - \gamma |x^{(k)} - x^{(k-1)}|^2$

- Step size restrictions come from $\gamma > 0$.
- Actually, α and β can vary along the iterations.
- Lipschitz constant of ∇f can be estimated "locally" using backtracking.
- Later, γ and δ and the norm can vary along the iterations [O., 2016].
- General case:

$$0 < \alpha < \frac{(1-2\beta)}{L}$$
 and $\beta \in [0, \frac{1}{2})$.

▶ *g* semi-convex with modulus $m \in \mathbb{R}$ (*m* maximal such that $g(x) - \frac{m}{2}|x|^2$ is convex):

$$0 < lpha < rac{2(1-eta)}{L-m} \quad ext{and} \quad eta \in [0,1) \,.$$

► g convex:

$$0 < \alpha < \frac{2(1-\beta)}{L} \quad \text{and} \quad \beta \in [0,1).$$

© 2017 - Peter Ochs

Definition:

A point $x^* \in \operatorname{dom} h$ is a **critical point** of $h \colon \mathbb{R}^N \to \overline{\mathbb{R}}$, if

 $0 \in \partial h(x^*)$ (zero of the limiting subdifferential).

In our case, it is equivalent to

 $-\nabla f(x^*) \in \partial g(x^*) \,.$

Theorem:

- The sequence $(h(x^{(k)}))_{k \in \mathbb{N}}$ converges.
- ► There exists a converging subsequence (x^{k_j})_{j∈ℕ}.
- Any limit point $x^* := \lim_{j \to \infty} x^{k_j}$ is a critical point of h and $h(x^{k_j}) \to h(x^*)$ as $j \to \infty$.

ヘロト ヘアト ヘビト ヘビト

Full convergence for iPiano

Theorem:

If $H_{\delta}(x, y)$ has the **Kurdyka-Łojasiewicz property** at a cluster point (x^*, x^*) , then

•
$$(x^{(k)})_{k\in\mathbb{N}}$$
 has finite length, i.e., $\sum_{k=1}^{\infty} |x^{(k)} - x^{(k-1)}| < \infty$,

- $x^{(k)} \to x^*$ as $k \to \infty$,
- (x^*, x^*) is a critical point of H_δ , and x^* is a critical point of h.

Kurdyka-Łojasiewicz property:

- Weak assumption about the structure of the objective functions.
- Very hard to find a function that **does not** have this property.
- Examples on next slide.

イロト イポト イヨト イヨト

Examples of KL functions

- Real analytic functions [Łojasiewicz '63]
- Differentiable functions that are definable in an o-minimal structure [Kurdyka '98]
- Non-smooth lsc functions that are definable in an o-minimal structure [Bolte, Daniilidis, Lewis, Shiota 2007], [Attouch, Bolte, Redont, Soubeyran 2010]
- ► semi-algebraic functions (polynomials, piecewise polynomials, absolute value function, Euclidean distance function, *p*-norm for *p* ∈ Q (also *p* = 0), ...)
- An o-minimal structure is closed under finite sums and products, composition, and several other important operations
- ▶ Bad news: not all functions are KL functions, [Bolte, Daniilidis, Ley, Mazet 2010] construct a C² function in ℝ² that does not satisfy the KL inequality
- ► Good news: Such functions are very unlikely to occur in practical applications

Abstract descent algorithms [Attouch et al. 2013]

 $\min_{x\in\mathbb{R}^N}f(x)$

- $f : \mathbb{R}^N \to \overline{\mathbb{R}}$ proper, lsc
- $(x^{(k)})_{k \in \mathbb{N}}$ sequence of iterates generated by some algorithm
- ▶ *a*, *b* > 0 fixed
 - (h1) (Sufficient decrease condition). For each $k \in \mathbb{N}$,

$$f(x^{(k+1)}) + a|x^{(k+1)} - x^{(k)}|^2 \le f(x^{(k)});$$

(h2) (**Relative error condition**). For each $k \in \mathbb{N}$, there exists $w^{(k+1)} \in \partial f(x^{(k+1)})$ such that

$$|w^{(k+1)}| \le b|x^{(k+1)} - x^{(k)}|;$$

(h3) (**Continuity condition**). There exists a subsequence $(x^{k_j})_{j \in \mathbb{N}}$ and \tilde{x} such that

$$x^{k_j} \to \tilde{x} \text{ and } f(x^{k_j}) \to f(\tilde{x}), \text{ as } j \to \infty.$$

► These properties are shared by many first-order optimization algorithms.

The following analysis is motivated by [Bolte, Sabach, Teboulle, 2013].

Lemma:

• $(f(x^{(k)}))_{k \in \mathbb{N}}$ is non-increasing and converging,

►
$$\sum_{j=1}^{k} |x^{(j+1)} - x^{(j)}|^2 < +\infty$$
 and, therefore $|x^{(k+1)} - x^{(k)}| \to 0$, as $k \to \infty$.

э

Direct consequences for the set of limit points

Define:

- Let ω_0 be the set of limit points of a bounded sequence $(x^{(k)})_{k \in \mathbb{N}}$.
- ▶ Subset of limit points that allow for subsequences along which *f* is continuous, i.e.,

$$\overline{\omega}_0 := \{ \overline{x} \in \omega_0 | x^{(k_j)} \xrightarrow{f} \overline{x} \text{ for } j \to \infty \} \subset \omega_0 \,.$$

Lemma: If *f* is continuous on dom *f*, then $\omega_0 = \overline{\omega}_0$.

From now on, let $(x^{(k)})_{k \in \mathbb{N}}$ be a bounded sequence.

Lemma:

- $\overline{\omega}_0$ is non-empty, and $\overline{\omega}_0 \subset \operatorname{crit} f$.
- ω_0 is non-empty, compact, and connected.
- It holds that $\lim_{k\to\infty} \operatorname{dist}(x^{(k)},\omega_0) = 0.$
- *F* is constant and finite on $\overline{\omega}_0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

An abstract convergence theorem

Theorem: ([Attouch et al. 2013])

If

- $f : \mathbb{R}^N \to \overline{\mathbb{R}}$ be a proper, lsc,
- $(x^{(k)})_{k\in\mathbb{N}}$ satisfies (h1), (h2), and (h3), and
- f has the KL property at the cluster point \tilde{x} ,

then

- $(x^{(k)})_{k\in\mathbb{N}}$ converges to $\bar{x} = \tilde{x}$,
- \bar{x} is a critical point of f,
- $(x^{(k)})_{k\in\mathbb{N}}$ has a finite length.

However, is does not apply to inertial methods directly.

伺き イヨト イヨト

Unifying abstract convergence theorem [O., 2016]

- $(u^{(k)})_{k\in\mathbb{N}}$ be a sequence of parameters in \mathbb{R}^{P} .
- ▶ $(\varepsilon_k)_{k \in \mathbb{N}}$ be an ℓ_1 -summable sequence of non-negative real numbers.
- ▶ $(a_k)_{k \in \mathbb{N}}$, $(b_k)_{k \in \mathbb{N}}$, and $(d_k)_{k \in \mathbb{N}}$ of non-negative real numbers.

(H1) (Sufficient decrease condition) For each $k \in \mathbb{N}$, it holds that

 $F(x^{(k+1)}, u^{(k+1)}) + a_k d_k^2 \le F(x^{(k)}, u^{(k)}).$

(H2) (**Relative error condition**) For each $k \in \mathbb{N}$, the following holds:

$$b_{k+1} \|\partial F(x^{(k+1)}, u^{(k+1)})\|_{-} \le \frac{b}{2}(d_{k+1} + d_k) + \varepsilon_{k+1}.$$

(H3) (Continuity condition) $\exists ((x^{(k_j)}, u^{(k_j)}))_{j \in \mathbb{N}}$ and $(\tilde{x}, \tilde{u}) \in \mathbb{R}^N \times \mathbb{R}^P$ such that

$$(x^{(k_j)}, u^{(k_j)}) \stackrel{F}{\to} (\tilde{x}, \tilde{u}) \text{ as } j \to \infty.$$

(H4) (Contraction condition) It holds that

 $|x^{(k+1)} - x^{(k)}|_2 \in \mathrm{o}(d_k) \quad \text{and} \quad (b_k)_{k \in \mathbb{N}} \not\in \ell_1 , \quad \sup_{k \in \mathbb{N}} b_k a_k < \infty , \quad \inf_k a_k =: \underline{a} > 0 .$

Theorem:

If

- ► *F* is a proper, lsc, bounded from below, and has the KL property,
- ► $(x^{(k)})_{k \in \mathbb{N}}$ be a bounded sequence generated by an abstract parametrized algorithm,
- with a sequence of parameter $(u^{(k)})_{k \in \mathbb{N}}$,
- $\omega(x^{(0)}, u^{(0)}) = \overline{\omega}(x^{(0)}, u^{(0)}),$

then

• $(x^{(k)})_{k\in\mathbb{N}}$ satisfies

$$\sum_{k=0}^{\infty} |x^{(k+1)} - x^{(k)}| < +\infty,$$

and $(x^{(k)})_{k \in \mathbb{N}}$ converges to some \tilde{x} .

▶ Moreover, if $(u^{(k)})_{k \in \mathbb{N}}$ is a converging sequence, then $((x^{(k)}, u^{(k)}))_{k \in \mathbb{N}}$ *F*-converges to (\tilde{x}, \tilde{u}) , and (\tilde{x}, \tilde{u}) is a critical point of *F*.

э

Non-smoth non-convex optimization problem: (f smooth, g non-smooth)

 $\min_{x \in \mathbb{R}^N} h(x) = \min_{x \in \mathbb{R}^N} f(x) + g(x)$

Algorithm. (variable metric iPiano, [O., 2016])

- ▶ **Initialization**: Choose a starting point $x^{(0)} \in \text{dom } h$ and set $x^{(-1)} = x^{(0)}$.
- ▶ **Iterations** $(k \ge 0)$: Choose $A_k \in S(N)$, $0 \prec A_k \preceq Id$, and update:

$$x^{(k+1)} \in (\mathrm{Id} + \alpha_k A_k^{-1} \partial g)^{-1} \left(x^{(k)} - \alpha_k A_k^{-1} \nabla f(x^{(k)}) + \beta_k (x^{(k)} - x^{(k-1)}) \right)$$

where α_k , β_k , γ_k , and δ_k are as in the base variant of iPiano and the following monotonicity condition holds:

$$\delta_{k+1} | x^{(k+1)} - x^{(k)} |_{A_{k+1}}^2 \le \delta_k | x^{(k+1)} - x^{(k)} |_{A_k}^2.$$

• **Convergence**: Same as in the Abstract Convergence Theorem from before.

- Lipschitz constant can be estimated with backtracking.
- Algorithm can be extended to block coordinate version.

[**O**]Vision

< 同 > < ヨ > < ヨ > -

э

Summary

Heavy-ball dynamical system:

$$\ddot{X}(t) = -\gamma \dot{X}(t) - \nabla f(X(t))$$

> The (time-discrete) Heavy-ball method has the update rule

$$x^{(k+1)} = x^{(k)} - \alpha \nabla f(x^{(k)}) + \beta (x^{(k)} - x^{(k-1)}).$$

Develop algorithms for special classes of structured non-convex problems:

+

min	smooth, non-convex
min	smooth, non-convex

non-smooth, non-convex, simple

iPiano:

$$x^{(k+1)} \in \operatorname{prox}_{\alpha g} \left(x^{(k)} - \alpha \nabla f(x^{(k)}) + \beta (x^{(k)} - x^{(k-1)}) \right)$$

Convergence analysis of iPiano and abstract descent methods.

伺き くきき くきき