
Fixed-Point Interpretations of Large-Scale
Convex Optimization Algorithms

Pontus Giselsson

1

Outline – Large-scale optimization methods

• Examples of large-scale problems

• Algorithm building blocks

• Problem formulation

• A unified fixed-point interpretation view
• Forward-backward and Douglas-Rachford fixed-point mappings
• Necessary and sufficient conditions for convergence
• Some algorithm examples
• A contraction factor result

• A tiny numerical example (time permitting)

2

Convex optimization applications

• Least squares

• Lasso, ridge regression, elastic net

• Support vector machines

• Logistic regression

• Sparse classification

• Matrix completion

• Model predictive control

• System identification

• Model reduction

• Portfolio optimization

• Signal reconstruction

• Trend filtering

3

Algorithm types and problem dimensions

Problem dimension Algorithm type

small to medium scale
(up to 1’000 variables)

Second-order methods
(Newton’s method, interior point)

large-scale
(up to 100’000 variables)

First-order methods

huge-scale
(more than 100’000 variables)

Stochastic, coordinate,
parallel asynchronous
first-order methods

In data rich fields, problems usually large to huge scale

4

Large-and huge scale algorithms

Will present unified view of:

• Projected gradient methods

• Proximal gradient methods

• Forward-backward splitting

• Douglas-Rachford splitting

• The alternating direction method of multipliers

• SAGA

• Finito/MISO

• SVRG

• Block-coordinate (proximal) gradient descent

• Block-coordinate consensus optimization

• (Three operator splitting methods)

• (Chambolle-Pock and Primal-dual methods)

5

First-order method building blocks

• (Sub-)gradients:

∇f(x) =

∂f
∂x1

...
∂f
∂xn

• Projections onto a sets C:

ΠC(z) = argmin
x

(‖x− z‖2 : x ∈ C)

• Proximal operators:

proxγg(z) = argmin
x

(g(x) + 1
2γ ‖x− z‖

2
2)

where γ > 0 is a parameter.

6

Prox is generalization of projection

• Introduce the indicator function of a set C

ιC(x) :=

{
0 if x ∈ C
∞ otherwise

(this is an extended valued function, i.e., domιC = R ∪ {∞})
• Then

ΠC(z) = argmin
x

(‖x− z‖2 : x ∈ C)

= argmin
x

(1
2‖x− z‖

2
2 : x ∈ C)

= argmin
x

(1
2‖x− z‖

2
2 + ιC(x))

= proxιC (z)

(projection onto C equals prox of indicator function of C)

7

Examples of proximal operators

• Quadratic function, g(x) = 1
2x

THx+ hTx:

proxγg(z) = (I + γH)−1(z − γh)

• The squared 2-norm, g(x) = 1
2‖x‖

2
2:

proxγg(z) = (1 + γ)−1z

• The 2-norm, g(x) = ‖x‖2:

proxγg(z) =

{
(1− γ/‖z‖2)z if ‖z‖2 ≥ γ
0 otherwise

• Affine subspace, V = {x : Ax = b}:

proxιV (z) = ΠV (z) = z −AT (AAT)−1(Az − b)

8

Piece-wise linear function

• Define hi : R→ R is

hi(x) =

cl(l − x) if x ≤ l
0 if l ≤ x ≤ u
cu(x− u) if x ≥ u

where cl, cu ∈ (0,∞] (∞ included) and l ≤ u
• graphical representations of different hi

cl = 1, cu = 0

l = 1, u =∞
cl = cu =∞
l = −1, u = 1

cl = cu = 1

l = u = 0

• special cases of hi
• hinge loss (SVM)
• upper and lower bounds
• “soft” upper and lower bounds
• absolute value

9

Prox of hi

• Prox of hi:

proxγhi
(z) =

z + γcl if z ≤ l − γcl
l if l − γcl ≤ z ≤ l
z if l ≤ z ≤ u
u if u ≤ z ≤ u+ γcu

z − γcu if z ≥ u+ γcu

• Graphical representation (l = −1, u = 1.5, γcl = 1, γcu = 2):

l

l − γcl
u

u+ γcu
l

u

10

Examples prox hi

• Hinge loss, g = hi with l = 1, u =∞, cl = 1, cu = 0:

proxγg(z) =

z + γ if z ≤ 1− γ
1 if 1− γ ≤ z ≤ 1

z if z ≥ 1

• Absolute value, g = hi with l = u = 0 and cl = cu = 1:

proxγg(z) =

z + γ if z ≤ −γ
0 if − γ ≤ z ≤ γ
z − γ if z ≥ γ

• Upper and lower bounds, g = hi with l < u and cl = cu =∞:

proxγg(z) =

l if z ≤ l
z if l ≤ z ≤ u
u if u ≤ z

11

Prox of separable functions

• Separable functions g(x) =
∑n
i=1 gi(xi) where x = (x1, . . . , xn):

proxγg(z) =

proxγg1(z1)
...

proxγgn(zn)

• Decomposes into n individual proxes

• 1-norm ‖x‖1, upper/lower bounds, hinge loss constructed from hi

12

Some prox/gradient computational costs

g : Rn → Rn prox cost grad cost comment
1
2x

THx+ hTx O(n3) O(n2) Sparse H cheaper
prox O(n2) after factorization

1
2‖Ax− b‖

2
2 O(m2n) O(mn) A ∈ Rm×n, m ≤ n

Sparse A cheaper
prox O(mn) after factorization

1
2‖x‖

2 O(n) O(n)
‖x‖ O(n) –

ι{x:Ax=b} O(m2n) – A ∈ Rm×n, m ≤ n
Sparse A cheaper∑n

i=1 hi(xi) O(n) – 1-norm, upper/lower bounds
hinge loss∑

i log(1 + e−yixi) ?? O(n) Logistic loss
prox requires iterative method

These and more implemented in ProximalOperators package in Julia
13

Pre and post compositions

• Precomposition with A ∈ Rm×n: g(x) = f(Ax)

• Gradient cost: O(mn) + cost(∇f)
• Prox cost: typically higher than for f

• Postcomposition with A: g(x) = inf(f(y) : Ay = x)

• Not differentiable even if f is
• Prox cost: typically higher than for f

14

Prox as resolvent

• The proximal operator satisfies

proxγg = (I + γ∂g)−1

where
• ∂g is the subdifferential operator
• (·)−1 is the inverse operator
• (I + γ∂g)−1 is called the resolvent

• Reason: optimality condition for the prox-computation:

x = proxγg(z) ⇔
x = argmin

x
{g(x) + 1

2γ ‖x− z‖
2} ⇔

0 ∈ γ∂g(x) + x− z ⇔
z ∈ (I + γ∂g)x ⇔
x = (I + γ∂g)−1z

15

Outline – Large-scale optimization methods

• Examples of large-scale problems

• Algorithm building blocks

• Problem formulation

• A unified fixed-point interpretation view
• Forward-backward and Douglas-Rachford fixed-point mappings
• Necessary and sufficient conditions for convergence
• Some algorithm examples
• A contraction factor result

• A tiny numerical example (time permitting)

16

Problem formulations

• Most algorithms solve problems of the form

minimize f(x) + g(x)

where f, g may be extended-valued: f, g : Rn → R ∪ {∞}
• Models e.g., constrained problems through

minimize f(x) + ιC(x)

where ιC is indicator function for set C

17

Consensus formulation

• What if we want to solve problems of the form

minimize 1
n

n∑
i=1

fi(x)

• One approach is to use consensus formulation:

minimize 1
n

n∑
i=1

fi(xi)︸ ︷︷ ︸
f(x)

+ ιC(x1, . . . , xn)︸ ︷︷ ︸
g(x)

with individual xi for each fi and a consensus constraint

C := {(x1, . . . , xn) : x1 = · · · = xn}

• Problem reduces to two function problem from before

• (Also called divide and concur)

18

Outline – Large-scale optimization methods

• Examples of large-scale problems

• Algorithm building blocks

• Problem formulation

• A unified fixed-point interpretation view
• Forward-backward and Douglas-Rachford fixed-point mappings
• Necessary and sufficient conditions for convergence
• Some algorithm examples
• A contraction factor result

• A tiny numerical example (time permitting)

19

Algorithms – An abstract view

• Most algorithms translate problem to fixed-point problem:

find x? such that Tx? = x?

where T is referred to as fixed-point operator (mapping)

• Fixed-points of T have close relationship to solution of problem

• Most algorithms are based on one of the following:
• The forward-backward map
• The Douglas-Rachford map

20

The forward-backward map

• Assume ∇f is Lipschitz and f is convex, g is convex, then (CQ)

x ∈ argmin{f(x) + g(x)} ⇔ 0 ∈ ∇f(x) + ∂g(x)

⇔ −γ∇f(x) ∈ ∇+ γ∂g(x)

⇔ (I − γ∇f)x ∈ (I + γ∂g)x

⇔ (I + γ∂g)−1(I − γ∇f)x ∈ x
⇔ proxγg(I − γ∇f)x = x

• The map proxγg(I − γ∇f) is the FB map

• Its fixed-points coincide with solutions to optimization problem

• Reverse order gives backward-forward operator (I − γ∇f)proxγg:

Argmin{f(x) + g(x)} = proxγg
(
Fix

(
(I − γ∇f)proxγg

))
where FixT = {x : x = Tx}

21

The Douglas-Rachford map

• Let Rγf = 2proxγf − I be the reflector or reflected resolvent

• It can be shown that

Argmin
x
{f(x) + g(x)} = proxγg(FixRγfRγg)

• The composition of reflected resolvents RγfRγg is DR map

• Fixed-point solves optimization problem after prox-step

22

Why these mappings?

• They have the favorable property of being nonexpansive

• Forward-backward operator
• Assume f, g convex, ∇f L-Lipschitz, and γ ∈ (0, 1

2L
)

• Then proxγ(I − γ∇f) is nonexpansive

• Douglas-Rachford operator
• Assume f, g convex and γ ∈ (0,∞)
• Then RγfRγg is nonexpansive

• Reason, building blocks have similar favorable properties

23

Nonexpansive

• The operators T are nonexpansive: for all x, y:

‖Tx− Ty‖ ≤ ‖x− y‖

• Let y = x̄ where x̄ = T x̄ is a fixed-point to T , then

‖Tx− x̄‖ ≤ ‖x− x̄‖

• 2D graphical representation

x̄ x

Tx in gray area (distance to fixed-point not increased)

24

Iterating T

• The iteration

xk+1 = Txk

is not guaranteed to converge to a fixed-point

• Example: T is a rotation

x̄ x0

x1
x2

x3
x4x5

x6

x7

x8

x9

• Why is nonexpansiveness a useful property?

25

The role of α-averaging

• We consider averaged iteration of the nonexpansive mapping T :

xk+1 = (1− α)xk + αTxk

where α ∈ (0, 1)
• 2D example on where xk+1 can end up for different α

(x̄ ∈ FixT):

x̄ xk

– α = 1 – α = 0.75 – α = 0.5 – α = 0.25

• Distance to fixed-points decreased if α ∈ (0, 1) and Txk 6= xk

26

Property of α-averaged operator

• Let S = (1− α)I + αT and xk+1 = Sxk, then it can be shown

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − β‖xk − Sxk‖2

for all z ∈ FixS = FixT and some β > 0

• ‖xk − z‖2 is Lyapunov function and ‖xk − Sxk‖ gives decrease

• Consequence:
• (‖xk − z‖)k≥0 converges for all z ∈ FixT
• ‖xk − Sxk‖ = α‖xk − Txk‖ → 0 as k →∞

which is sufficient to show convergence towards a fixed-point

27

Many different ways to find fixed-point

• Many algorithms for large-scale optimization are of the form:

zk+1 := (1− α)zk + αT̂zk = zk − α(zk − T̂ zk)

where α ∈ (0, 1) and T̂ is either:
• The full operator T (large-scale)
• A randomized coordinate block update operator of T (huge-scale)
• A stochastic approximation of T (huge-scale)

• The expected zk+1 given zk for both stochastic methods satisfy:

Ekzk+1 = zk − α(zk − Tzk)

they are unbiased stochastic versions of the full operator method

28

Finding fixed-point of nonexpansive mapping

• The sufficient conditions:

1. (‖z − xk‖)k≥0 converges for all z ∈ FixT
2. ‖Txk − xk‖ → 0 as k →∞

are also necessary conditions

• All orbits from algorithms that find fixed-point satisfy these

29

How to guarantee conditions – Deterministic case

• A Lyapunov function of the form

‖zk+1 − z?‖22 + κk+1 ≤ ‖zk − z?‖22 + κk − γk

where γk ≥ 0 and κk ≥ 0 satisfy
• γk → 0 implies ‖Txk − xk‖ → 0
• ‖Txk − xk‖ → 0 implies κk → 0

• Easy to verify that

(γk)k≥0 is summable and (‖zk − z?‖2 + κk)k≥0 converges

therefore ‖Txk − xk‖ → 0 and κk → 0 which implies

‖Txk − xk‖ → 0 and (‖zk − z?‖2)k≥0 converges

i.e., zk → FixT

30

How to guarantee conditions – Stochastic case

• A stochastic Lyapunov function of the form

Ek‖zk+1 − z?‖22 + κk+1 ≤ ‖zk − z?‖22 + κk − γk

where γk ≥ 0 and κk ≥ 0 as before

• The Robbins-Siegmund supermartingale theorem guarantees (a.s.)

(γk)k≥0 is summable and (‖zk − z?‖2 + κk)k≥0 converges

which (by same arguments as before) implies zk → FixT a.s.

31

Forward-backward splitting

• Solves: minimize f(x) + g(x)

• Applicable when f is Lipschitz differentiable

• Full update algorithm: Iterates forward-backward map:

xk+1 = Txk = proxγg(I − γ∇f)xk

(i.e., uses α = 1 since mapping already averaged)

• One forward (gradient) step and one backward (prox) step

• Special case: (projected) gradient method

• Converges to solution of optimization problem

• Cutting the algorithm differently gives backward-forward method:

zk+1 = (I − γ∇f)proxγgz
k

32

Douglas-Rachford splitting

• Solves: minimize f(x) + g(x)

• Applicable when f and g are proper closed convex

• Averaged iteration of Douglas-Rachford map with α ∈ (0, 1):

zk+1 = (1− α)zk + α(2proxγf − I)(2proxγg − I)zk

• Two backward (prox) steps

• Converges to fixed-point z? of DR operator T

• Solution to optimization problem is proxγgz
?

33

Alternating direction method of multipliers (ADMM)

• Solves:

minimize f(x) + g(y)
subject to Ax+By = c

which is equivalent to solve: minimize f̂(z) + ĝ(z), where

f̂(z) = inf
x

(f(x) : Ax = −z), ĝ(z) = inf
y

(g(y) : By = c+ z)

• Applicable when f and g are proper closed convex

• ADMM is averaged iteration of DR map applied to f̂ and ĝ:

zk+1 = (1− α)zk + α(2proxγf̂ − I)(2proxγĝ − I)zk

• Two backward (prox) steps on more complicated image functions

• If A = I, B = −I, and c = 0, ADMM=DR

34

ADMM cont’d

• Algorithm becomes (if subproblems can be solved):

xk := argmin
x

(f(x) + 1
2γ ‖Ax+ zk‖22)

yk := argmin
y

(g(y) + 1
2γ ‖By + 2Axk+1 + zk − c‖22)

zk+1 := zk + 2α(Axk+1 +Byk+1 − c)

• It can also for α = 1
2 be implemented as

yk+1 := argmin
y

(g(y) + 1
2γ ‖Ax

k +By − c+ γλk‖22)

xk+1 := argmin
x

(f(x) + 1
2γ ‖Ay +Bzk+1 − c+ γλk‖22)

λk+1 := λk + γ−1(Axk+1 +Byk+1 − c)

(this is standard formulation of ADMM)

35

Block-coordinate methods

• Decompose the T operator into m blocks:

T =

 (T)1
...

(T)m

• Randomized block-coordinate update algorithm:

1. Select an index j ∈ {1, . . . ,m} at random with probabilities qj
2. Update block j according to:

zk+1
j := zkj − α

qj
(zkj − (T)jz

k)

3. Leave the others: zk+1
i = zki for all i 6= j

• Let T̃j = (I1, . . . , (Tj), . . . , Im): Expected value of zk+1 given zk:

Ekzk+1 = Ek(zk − α
qj

(zk − T̃jzk)) = zk −
m∑
j=1

qjα
qj

(zk − T̃jzk)

= zk − α(zk − Tzk)

• Randomization is needed to guarantee convergence (a.s.)
• Efficient if m steps of block-method as expensive as one eval of T

36

Algorithm examples

• Forward-backward if g separable coordinate gradients of f cheap

• Consensus formulation and Douglas-Rachford

• Consensus formulation and backward-forward (Finito/MISO)

37

Stochastic backward-forward method

• Consider problems of the form

minimize 1
n

n∑
i=1

fi(x) + g(x)

where fi have Li-Lipschitz gradients and g is prox-friendly
• Consider the backward-forward operator

T = (I − γ∇f)proxγg = 1
n

n∑
i=1

(I − γ∇fi)proxγg

• Algorithm with stochastic approximation of T :
1. Randomly select an index i ∈ {1, . . . , n} with probability pi
2. Set: zk+1 := zk − αk

npi
(zk − (I − γ∇fi)proxγgzk)

• Expected value of zk+1 given zk with Ti := (I − γ∇fi)proxγg is:

Ekzk+1 = zk − Ek αk

npj
(zk − Tizk) = zk − αk(zk − Tzk)

• Advantage: Cheaper iterations than using ∇f if n large
• Drawback: Requires diminishing step-sizes to converge

38

Reduced variance stochastic methods

• Reduce variance by remembering old gradients ∇fixk−dk
• An algorithm (SAGA):

1. Select an index i ∈ {1, . . . , n} at random with probabilities pi
2. Update z and w-vectors according to:

zk+1 := wk − γ

(
1
npi
∇fi(wk)− 1

npi
yki + 1

n

n∑
j=1

ykj

)
wk+1 := proxγgz

k+1

3. Update y-vectors according to:

yk+1
i = ∇fi(wk)

4. Leave the others: yk+1
i = yki for all i 6= j

• Expected value of zk+1 given zk and yki is:

Ekzk+1 = wk − γ
n

n∑
j=1

ykj −
n∑
i=1

pi(
γ
npi
∇fi(wk)− γ

npi
yki)

= wk − γ∇f(wk) = (I − γ∇f)proxγgz
k

• Converges (a.s.) with fixed (but restricted) step-size
• Many variations in how and which y-vectors that are updated exist

39

RVSBC methods

• RVSBC - Reduced Variance Stochastic Block Coordinate

• Combine reduced variance and block coordinate methods

40

Caveats

• Algorithm parameters much be chosen to guarantee convergence!

• Stochastic methods should be implemented in real language
In MATLAB, performance benefits not revealed due to for loops

41

A contraction factor result

• Recently many linear convergence results for ADMM when:
• f strongly convex, differentiable, and ∇f Lipschitz
• g convex (possibly extended-valued)

• Reason: The DR-map RγfRγg becomes contractive

42

Example: LASSO

• Consider the LASSO problem:

minimize 1
2‖Ax− b‖

2
2︸ ︷︷ ︸

f(x)

+λ‖x‖1︸ ︷︷ ︸
g(x)

with A ∈ Rm×n and m < n

• f is differentiable with ‖A‖2-Lipschitz gradient

• 1-norm non-differentiable ⇒ must use prox

• Can apply forward backward or Douglas-Rachford algorithm

• Possible (full operator) building blocks

∇f(z) = AT (Az − b) O(mn)

proxγf (z) = (I + γATA)−1(z + γAT b) O(nm2) (O(nm))

proxγg(z) =

z + γ if z ≤ −γ
0 if − γ ≤ z ≤ γ
z − γ if z ≥ γ

O(n)

43

LASSO: FB and DR

• Forward-backward algorithm (O(mn) / iter):

zk := xk − γAT (Axk − b)
xk+1 := proxγλ‖·‖1(zk)

• Douglas-Rachford algorithm (O(m2n) first iter, then O(mn)):

xk := (I + γATA)−1(zk + γAT b)

yk := proxγλ‖·‖1(2xk − zk)

zk+1 := zk + α(yk − xk)

44

LASSO: Coordinate update method

• The forward-backward operator has block-structure:

Txk =

proxγλ|·|(x
k
1 − aT1 (Axk − b))

...
proxγλ|·|(x

k
n − aTn (Axk − b))

where ai ∈ Rm are columns of A ∈ Rm×n: A = [a1, a2, . . . , an]

• Blocks seem expensive to evaluate due to Axk − b
• Due to linearity, can store and update Axk − b according to

Axk − b = (Axk−1 − b) +A(xk − xk−1)

= (Axk−1 − b) + ajk−1
(xkjk−1

− xk−1jk−1
)︸ ︷︷ ︸

cheap update

where last step holds since only xjk−1
updated

• Complexity per iteration: O(m)

• Can run roughly n iterations at cost of one FB iteration

45

LASSO: Reduced variance stochastic gradient

• To fit algorithm, write LASSO problem equivalently (divide by m):

minimize 1
2m

m∑
i=1

(aTi x− bi)2︸ ︷︷ ︸
f(x)

+ λ
m‖x‖1︸ ︷︷ ︸
g(x)

where ai ∈ Rn now are rows of A ∈ Rm×n: A = [aT1 , . . . , a
T
n]T

• The gradient can be written as:

∇f(x) = 1
m

m∑
i=1

ai(a
T
i x− bi)

• The backward-forward operator is

T = (I − γ∇f)proxγg = 1
m

m∑
i=1

(I − γ
mai(a

T
i (·)− bi))proxγλ

m ‖·‖1

46

LASSO: Reduced variance stochastic gradient

• SAGA algorithm:

1. Select an index i ∈ {1, . . . , n} at random with probabilities pi
2. Update z and w-vectors according to:

zk+1 := wk − α

(
1
npi

ai(a
T
i w

k − bi)− 1
npi

yki + 1
n

n∑
j=1

ykj

)
wk+1 := proxαgz

k+1

3. Update y-vectors according to:

yk+1
i = ai(a

T
i w

k − bi)

4. Leave the others: yk+1
i = yki for all i 6= j

• In practice: Store (aTi w
k − bi) ∈ R and multiply by ai when used

• Complexity per iteration: O(n)

• Can run roughly m iterations of at same cost as one FB iteration

47

Numerical example

Randomly generated A ∈ Rm×n with m = 250, n = 300:

Algorithm FB DR CD SAGA
Cost/iter O(mn) O(m2n), O(mn) O(m) O(n)
Iters 542 107 33315 62848
Weighted iters 542 357 111 251

Randomly generated A ∈ Rm×n with m = 50, n = 300:

Algorithm FB DR CD SAGA
Cost/iter O(mn) O(m2n), O(mn) O(m) O(n)
Iters 1644 199 35376 77714
Weighted iters 1664 249 118 1554

48

Thank you

Questions?

49

