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Convex optimization applications

Least squares

Lasso, ridge regression, elastic net
Support vector machines
Logistic regression
Sparse classification
Matrix completion
Model predictive control
System identification
Model reduction
Portfolio optimization
Signal reconstruction
Trend filtering



Algorithm types and problem dimensions

Problem dimension Algorithm type
small to medium scale Second-order methods
(up to 1’000 variables) (Newton's method, interior point)
large-scale First-order methods

(up to 100'000 variables)

huge-scale Stochastic, coordinate,
(more than 100°000 variables) parallel asynchronous
first-order methods

In data rich fields, problems usually large to huge scale



Large-and huge scale algorithms

Will present unified view of:

o Projected gradient methods

e Proximal gradient methods

e Forward-backward splitting

e Douglas-Rachford splitting

e The alternating direction method of multipliers
e SAGA

e Finito/MISO

¢ SVRG

e Block-coordinate (proximal) gradient descent

o Block-coordinate consensus optimization

(Three operator splitting methods)
e (Chambolle-Pock and Primal-dual methods)



First-order method building blocks

e (Sub-)gradients:

Vi(x) = :
of
Oy

e Projections onto a sets C:
IIo(z) = argmin(||lz — z|j2 : x € C)
x
e Proximal operators:
prox,,(z) = argmin(g(x) + 55 [lz — 23)
€T

where v > 0 is a parameter.



Prox is generalization of projection

e Introduce the indicator function of a set C

(@) = {0 ifrecC

oo otherwise

(this is an extended valued function, i.e., domtc = RU {o0})
e Then

[o(z) = argmin(||z — z|j2 : © € O)
x
= argmin(3 ||z — 2|3 : 2 € O)
x
= argmin(3 |z — 2|13 + ic(2)
= pI‘OXLC(Z)

(projection onto C' equals prox of indicator function of C')



Examples of proximal operators

Quadratic function, g(z) = 327 Ha + hTa:

prox, (=) = (I +7H) ™ (z = 4h)

The squared 2-norm, g(z) = 3||z[3:

prox., () = (1+7) 712

The 2-norm, g(z) = ||z|2:

A =A/llzll2)z i [lz]l2 >y
prox,g(2) = {O otherwise

Affine subspace, V = {z : Ax = b}:

prox,  (2) = Iy (z) = z — AT(AAT)"1(Az — b)



Piece-wise linear function

e Defineh; : R—Ris

a(l—z) ifz<li

hi(z) =40 ifl<z<u

cu(r—u) fzx>u

where ¢, ¢, € (0,00] (00 included) and I < u
e graphical representations of different h;

N %

cg=1¢,=0 Cl = Cy = X0

=1 u=00 l=—1,u=1

e special cases of h;

hinge loss (SVM)

upper and lower bounds

“soft” upper and lower bounds
absolute value



Prox of h;

e Prox of h;:

zZ+ e

l
prox.; (2) = ¢ z

u

z— ey

e Graphical representation (I = —1,u = 1.5,v¢; = 1,y¢, = 2):
A

l

if z<l—7q

ifl —vyeq <2<
ifl<z<u
ifu<z<u+vyc,
if 22> u+ e,

7

l—yq

U —|—"ycu
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Examples prox h;

e Hingeloss, g=h; withl =1, u=00, ¢ =1, ¢, =0:
z4+y fz<1—vw
prOX'yg(z): 1 ifl—vy<2<1
z if z>1
e Absolute value, g = h; withl=u=0and ¢ =¢, = 1:
z4+v fz<—y
pI'OX,Yg(Z): 0 if 7’y§z§fy
z—vy ifz>x

e Upper and lower bounds, g = h; with [ < u and ¢; = ¢, = oo:

I ifz<l
pI'OX,Yg(Z) =<z ifl <z<u
u ifu<z
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Prox of separable functions

e Separable functions g(z) = Y. | gi(x;) where z = (z1,...,2,):

prox., (21)
prox,,(z) = :

prox., (zn)

e Decomposes into n individual proxes

e 1-norm ||z||1, upper/lower bounds, hinge loss constructed from h;
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Some prox/gradient computational costs

g:R* - R" prox cost | grad cost | comment

1aTHe + hTa O(n?) O(n?) Sparse H cheaper
prox O(n?) after factorization

3|l Az — b|l3 O(m?n) | O(mn) AeR™™ m<n
Sparse A cheaper
prox O(mn) after factorization

3llz? O(n) O(n)

[l O(n) -

U{x: Az=b} O(mzn) - AceR™*"™ m<n
Sparse A cheaper

Yo i) O(n) - 1-norm, upper/lower bounds
hinge loss

> log(14+ e vimi) | 77 O(n) Logistic loss

prox requires iterative method

13
These and more implemented in ProximalOperators package in Julia



Pre and post compositions

e Precomposition with A € R™*™: g(x) = f(Ax)
e Gradient cost: O(mn) + cost(V f)
e Prox cost: typically higher than for f

e Postcomposition with A: g(x) = inf(f(y) : Ay =
o Not differentiable even if f is
e Prox cost: typically higher than for f

x)

14



Prox as resolvent

e The proximal operator satisfies

prOX'y_q = (I + ’yag)_l

where

e (g is the subdifferential operator
e ()7!is the inverse operator
e (I4+~0g)~"is called the resolvent

e Reason: optimality condition for the prox-computation:
T = prox.,,(z)
x = argmin{g(x) + %Hx —z|*}
x
0€~9g(z)+z—2
z€ (I +~0g)x
x=(I+~0g9) 'z

te ¢
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Problem formulations

e Most algorithms solve problems of the form
minimize f(z) + g(x)

where f, g may be extended-valued: f,g:R" = RU {oco}
e Models e.g., constrained problems through

minimize f(z) + to(x)

where t¢ is indicator function for set C'
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Consensus formulation

e What if we want to solve problems of the form
n
. . . 1
minimize - ZfL(a:)
i=1

e One approach is to use consensus formulation:

n
minimize * Z filx)) +ee(xy, ..o xn)
— 9(x)
F(x)

with individual x; for each f; and a consensus constraint
C:: {(ﬁCl,...,xn) | :...:xn}

e Problem reduces to two function problem from before
e (Also called divide and concur)
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Algorithms — An abstract view

e Most algorithms translate problem to fixed-point problem:
find 2* such that Ta* = x*

where T is referred to as fixed-point operator (mapping)
e Fixed-points of T have close relationship to solution of problem

e Most algorithms are based on one of the following:

e The forward-backward map
e The Douglas-Rachford map

20



The forward-backward map

Assume V f is Lipschitz and f is convex, g is convex, then (CQ)

x € argmin{f(z) + g(x)} < 0 € Vf(x) + dg(x)
& =V f(z) €V +y0g(x)
& (I —yVfz e (I +~9g)x
& (I4+~09) *(I —Vf)zcx
& prox. (I —yVflz =z

The map prox. (I —yVf) is the FB map
Its fixed-points coincide with solutions to optimization problem

Reverse order gives backward-forward operator (I — nyf)proxvg:

Argmin{f(z) + g(z)} = prox. (Fix ((I — nyf)proxw))

where FixT = {z : x = Tx}
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The Douglas-Rachford map

Let R,y = 2prox. s — I be the reflector or reflected resolvent

It can be shown that
Argmin{ f(2) + g(x)} = prox.,,(FixR, s Ryg)

The composition of reflected resolvents R+ ¢4 is DR map

Fixed-point solves optimization problem after prox-step
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Why these mappings?

They have the favorable property of being nonexpansive
Forward-backward operator

e Assume f,g convex, Vf L-Lipschitz, and v € (0, 5%)

e Then prox_ (I —V f) is nonexpansive
Douglas-Rachford operator

e Assume f, g convex and v € (0, 00)

e Then R,sR,4 is nonexpansive

Reason, building blocks have similar favorable properties

23



Nonexpansive

e The operators T" are nonexpansive: for all z, y:
[Tz =Tyl < [l —yll

o Let y = where T =T7 is a fixed-point to T, then
[Tz — 2| < [lz — |

e 2D graphical representation

Tz in gray area (distance to fixed-point not increased)

24



Iterating T’

e The iteration
oFtl = Tk

is not guaranteed to converge to a fixed-point
e Example: T is a rotation

e Why is nonexpansiveness a useful property?

25



The role of a-averaging

o We consider averaged iteration of the nonexpansive mapping 7"

2 = (1 — a)z® + aT2”

where a € (0,1)

e 2D example on where x
(z € FixT):

k+1 can end up for different o

O-a=1 O-a=07 O-a=05 O-a=025
e Distance to fixed-points decreased if o € (0,1) and Tz* # z*

26



Property of a-averaged operator

e Let S=(1—a)l+aT and z**! = Sz*, then it can be shown
2"+t — 2% < |2 — 2| — B||2* — Sz¥|?

for all z € FixS = FixT and some 3 > 0
e ||2% — z||? is Lyapunov function and ||z* — Sz*|| gives decrease

o Consequence:
e (Jl2* — 2||)x>0 converges for all z € FixT
o ||z — Sz*|| = afjz® — T2F|| - 0as k = o

which is sufficient to show convergence towards a fixed-point

27



Many different ways to find fixed-point

e Many algorithms for large-scale optimization are of the form:

L= (1 —a)2F 4+ aT2F = 2F — (28 — T2F)

where a € (0,1) and T is either:

e The full operator T' (large-scale)
o A randomized coordinate block update operator of T' (huge-scale)
o A stochastic approximation of 7' (huge-scale)

e The expected z¥*1 given 2" for both stochastic methods satisfy:
Epzftl = 2% — a(2F — T25)

they are unbiased stochastic versions of the full operator method
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Finding fixed-point of nonexpansive mapping

e The sufficient conditions:

1. (J]z — z¥||)x>0 converges for all z € FixT
2. ||Tz* — 2% = 0as k — oo

are also necessary conditions

o All orbits from algorithms that find fixed-point satisfy these

29



How to guarantee conditions — Deterministic case

e A Lyapunov function of the form

k k
12570 = 2113 + g < 127 = 2713 + ki —
where v, > 0 and kg > 0 satisfy

e v, — 0 implies ||[Tz* — z*|| — 0

o | Tz — z*|| — 0 implies k1, — 0

e Easy to verify that
(V&) x>0 is summable and (||zF — 2*||> 4 k1 )k>0 converges
therefore ||T2* — 2*|| — 0 and x; — 0 which implies
|T2* — 2| — 0 and (||2" — 2*||*)k>0 converges

ie., zF = FixT
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How to guarantee conditions — Stochastic case

e A stochastic Lyapunov function of the form
Exl| 250 = 2713 + i < 125 = 213 + 51 — e

where v > 0 and ki > 0 as before

e The Robbins-Siegmund supermartingale theorem guarantees (a.s.)
(V&) k>0 is summable and (||z¥ — 2*||2 4 k1. )k>0 converges

which (by same arguments as before) implies z¥ — FixT a.s.

31



Forward-backward splitting

Solves: minimize f(z) + g(z)
Applicable when f is Lipschitz differentiable

Full update algorithm: Iterates forward-backward map:
P = T = prox. (I — AV f)ak

(i.e., uses @ = 1 since mapping already averaged)

One forward (gradient) step and one backward (prox) step
Special case: (projected) gradient method

Converges to solution of optimization problem

Cutting the algorithm differently gives backward-forward method:

2= (1 - WVf)proxwgzk
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Douglas-Rachford splitting

Solves: minimize f(z) + g(z)
Applicable when f and g are proper closed convex
Averaged iteration of Douglas-Rachford map with « € (0, 1):

= (1 —a)f + a(2prox, ; — I)(2prox,, — I)z*

Two backward (prox) steps
Converges to fixed-point z* of DR operator T’

Solution to optimization problem is prox., 2*
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Alternating direction method of multipliers (ADMM)

Solves:

minimize  f(z) + g(y)
subjectto Az + By=c¢

which is equivalent to solve: minimize f(z) + g(z), where

f(z) =mf(f(z) - Av = —2), §(2) =1inf(g(y) : By =c +z)

Applicable when f and g are proper closed convex
e ADMM is averaged iteration of DR map applied to f and g:

= (1 —a)f + 04(2PI"OX7 — I)(2prox,; — I)z*

f

Two backward (prox) steps on more complicated image functions
If A=1, B=—1I, and ¢ = 0, ADMM=DR
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ADMM cont’d

o Algorithm becomes (if subproblems can be solved):

@" = argmin(f(z) + o | Az + 2F[13)

Y= arg;nin(g(y) + %HBy +2A2F 428 — ¢3)
L= 2P 4 2a(Axh T 4 ByFt! — ¢

e |t can also for o = % be implemented as

yF = argmin(g(y) + o [ Az® + By — ¢+ A"3)
Y

251 = argmin(f(2) + 5 Ay + B2F — ¢+ 42|3)
x

)\k:-i-l — )\k +’)/_1(A$k+1 +Byk+1 _ C)

(this is standard formulation of ADMM)
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Block-coordinate methods

Decompose the T' operator into m blocks:

(T)
T
(T)m

Randomized block-coordinate update algorithm:
1. Select an index j € {1,...,m} at random with probabilities g¢;
2. Update block j according to:
k

k+1 k k ;
2y th= 2] — q%(zj —(1);2")

3. Leave the others: 25! = 2¥ for all i # j
k.

Let Tj = (I1,...,(T}), ..., I,,): Expected value of zF*1 given =

Bt = By (5 — £(F — Ty29)) = 2 = 3 B2 (o 7h)
j=1

=28 —a(F - T2F)

Randomization is needed to guarantee convergence (a.s.)
Efficient if m steps of block-method as expensive as one eval of T'
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Algorithm examples

o Forward-backward if g separable coordinate gradients of f cheap
e Consensus formulation and Douglas-Rachford

e Consensus formulation and backward-forward (Finito/MISO)
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Stochastic backward-forward method

Consider problems of the form

n
.. 1
minimize =
n

where f; have L;-Lipschitz gradlents and g is prox-friendly
Consider the backward-forward operator

T = (I =~V f)prox,, —%Z[ vV fi)prox.,,

Algorithm with stochastic approximation of T":
1. Randomly select an index i € {1,...,n} with probability p;
2. Set: ZFFl .=k — %‘7(2" - (I- ’nyi)proxwzk)
K1 given z¥ with T; := (I — vV f;)prox. , is

Ekszrl — Lk —Ek%(zk _lek) — ok _ ak(zk _Tzk>
J

Expected value of z

Advantage: Cheaper iterations than using V f if n large
Drawback: Requires diminishing step-sizes to converge
38



Reduced variance stochastic methods

e Reduce variance by remembering old gradients V f;2*~%

¢ An algorithm (SAGA):
1. Select an index 7 € {1,...,n} at random with probabilities p;
2. Update z and w-vectors according to:

#imut oy (ﬁvﬁ(wk) SR Zyj>

k+1 k+1
w ‘= Pprox, z

3. Update y-vectors according to:

Yttt = Vfiw")

4. Leave the others: yi.” = yF forall i # j
e Expected value of 2**! given 2* and yF is

n n
Bzt = wh — %Z =Y pi(GLV fi(wh) -
=1 =1

AT = (1 4 Ppros,
o Converges (a.s.) with fixed (but restricted) step-size
e Many variations in how and which y-vectors that are updated exist

k
n;i Z/z)
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RVSBC methods

e RVSBC - Reduced Variance Stochastic Block Coordinate
e Combine reduced variance and block coordinate methods
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Caveats

o Algorithm parameters much be chosen to guarantee convergence!

e Stochastic methods should be implemented in real language
In MATLAB, performance benefits not revealed due to for loops
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A contraction factor result

o Recently many linear convergence results for ADMM when:

e f strongly convex, differentiable, and V f Lipschitz
e g convex (possibly extended-valued)

e Reason: The DR-map R,¢R,, becomes contractive
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Example: LASSO

Consider the LASSO problem:
minimize || Az — b[|3 + ||z
——— N~
f(x) g9(z)

with A € R™*"™ and m <n

f is differentiable with ||A||?-Lipschitz gradient

1-norm non-differentiable = must use prox

Can apply forward backward or Douglas-Rachford algorithm
Possible (full operator) building blocks

Vf(z)=AT(Az —b) O(mn)
prox. ¢(2) = (I + YAT A7z +~vATD)  O(nm?) (O(nm))
z4+v ifz<—y
prox,,(z) =10 if —y<z<y O(n)
z—y ifz>x
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LASSO: FB and DR

e Forward-backward algorithm (O(mn) / iter):

2= ok — y AT (A2b —b)

k+1

2T o= prox, ., ()

e Douglas-Rachford algorithm (O(m?n) first iter, then O(mn)):
2= (I +yATA) 71 (2F + 4 ATD)

k. k_ Lk
Y 1= prox ., (227 — 2")

=2k oyt — 2
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LASSO: Coordinate update method

The forward-backward operator has block-structure:

prox. . (zf — af (Az* — b))

Tk = :
prox, . (zh — a; (Az" — b))
where a; € R™ are columns of A € R™*": A = [a1,a2,...,a,]
Blocks seem expensive to evaluate due to Az* — b
Due to linearity, can store and update Az* — b according to
Azb — b= (Az" 1 —b) + A(2F — 2P
= (Axk_l - b) + a’jk—l(xk - mkil )

Jk—1 Jk—1

cheap update
where last step holds since only x;, , updated
Complexity per iteration: O(m)
Can run roughly n iterations at cost of one FB iteration
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LASSO: Reduced variance stochastic gradient
e To fit algorithm, write LASSO problem equivalently (divide by m):

m
minimize .- Z(aiTx — b))%+ 2z
i=1 e

9(x)

f(@)

where a; € R™ now are rows of A € R™*": A =[af,... al]T
e The gradient can be written as:
ai(alz — b;)

i

Vi) =2

IV

i=1

e The backward-forward operator is

T = (I -V [)prox,, = &= > (I = Zai(aj (-) = bi))prox

i=1 m

Il
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LASSO: Reduced variance stochastic gradient

e SAGA algorithm:

1. Select an index i € {1,...,n} at random with probabilities p;
2. Update z and w-vectors according to:

n
k+1 . Kk 1 T k . 1,k 1 k
2T i=w —oa<nmaz(aiw _bl)_nmyi"'ﬁg yj>

Jj=1

k+1 k+1
w + = pI‘OXagZ +

3. Update y-vectors according to:
Yt = ai(al w" — b))
4. Leave the others: y*™1 = y¥ for all i # j
e In practice: Store (aika —b;) € R and multiply by a; when used

o Complexity per iteration: O(n)
e Can run roughly m iterations of at same cost as one FB iteration
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Numerical example

Randomly generated A € R™*™ with m = 250, n = 300:

Algorithm FB DR CD SAGA
Cost/iter O(mn) O(m?n),0(mn) O(m) O(n)
Iters 542 107 33315 62848
Weighted iters 542 357 111 251

Randomly generated A € R™*™ with m = 50, n = 300:

Algorithm FB DR CD SAGA
Cost/iter O(mn) O(m?n),0(mn) O(m) O(n)
Iters 1644 199 35376 77714

Weighted iters 1664 249 118 1554



Thank you

Questions?
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