Fixed-Point Interpretations of Large-Scale Convex Optimization Algorithms

Pontus Giselsson

Outline – Large-scale optimization methods

- Examples of large-scale problems
- Algorithm building blocks
- Problem formulation
- A unified fixed-point interpretation view
 - Forward-backward and Douglas-Rachford fixed-point mappings
 - Necessary and sufficient conditions for convergence
 - Some algorithm examples
 - A contraction factor result
- A tiny numerical example (time permitting)

Convex optimization applications

- Least squares
- Lasso, ridge regression, elastic net
- Support vector machines
- Logistic regression
- Sparse classification
- Matrix completion
- Model predictive control
- System identification
- Model reduction
- Portfolio optimization
- Signal reconstruction
- Trend filtering

Algorithm types and problem dimensions

Problem dimension

small to medium scale (up to 1'000 variables)

large-scale (up to 100'000 variables)

huge-scale (more than 100'000 variables)

Algorithm type

Second-order methods (Newton's method, interior point)

First-order methods

Stochastic, coordinate, parallel asynchronous first-order methods

In data rich fields, problems usually large to huge scale

Large-and huge scale algorithms

Will present unified view of:

- Projected gradient methods
- Proximal gradient methods
- Forward-backward splitting
- Douglas-Rachford splitting
- The alternating direction method of multipliers
- SAGA
- Finito/MISO
- SVRG
- Block-coordinate (proximal) gradient descent
- Block-coordinate consensus optimization
- (Three operator splitting methods)
- (Chambolle-Pock and Primal-dual methods)

First-order method building blocks

• (Sub-)gradients:

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

• Projections onto a sets C:

$$\Pi_C(z) = \operatorname*{argmin}_x(\|x - z\|_2 : x \in C)$$

• Proximal operators:

$$\operatorname{prox}_{\gamma g}(z) = \operatorname{argmin}_{x}(g(x) + \frac{1}{2\gamma} \|x - z\|_{2}^{2})$$

where $\gamma > 0$ is a parameter.

Prox is generalization of projection

- Introduce the indicator function of a set ${\boldsymbol C}$

$$\iota_C(x) := \begin{cases} 0 & \text{if } x \in C \\ \infty & \text{otherwise} \end{cases}$$

(this is an extended valued function, i.e., $\operatorname{dom}\iota_C = \mathbb{R} \cup \{\infty\}$) • Then

$$\Pi_{C}(z) = \underset{x}{\operatorname{argmin}} (\|x - z\|_{2} : x \in C)$$

=
$$\underset{x}{\operatorname{argmin}} (\frac{1}{2} \|x - z\|_{2}^{2} : x \in C)$$

=
$$\underset{x}{\operatorname{argmin}} (\frac{1}{2} \|x - z\|_{2}^{2} + \iota_{C}(x))$$

=
$$\operatorname{prox}_{\iota_{C}}(z)$$

(projection onto C equals prox of indicator function of C)

Examples of proximal operators

• Quadratic function, $g(x) = \frac{1}{2}x^THx + h^Tx$:

$$\operatorname{prox}_{\gamma g}(z) = (I + \gamma H)^{-1}(z - \gamma h)$$

• The squared 2-norm, $g(x) = \frac{1}{2} ||x||_2^2$:

$$\operatorname{prox}_{\gamma g}(z) = (1+\gamma)^{-1} z$$

• The 2-norm, $g(x) = \|x\|_2$:

$$\mathrm{prox}_{\gamma g}(z) = \begin{cases} (1 - \gamma / \|z\|_2)z & \text{if } \|z\|_2 \geq \gamma \\ 0 & \text{otherwise} \end{cases}$$

• Affine subspace, $V = \{x : Ax = b\}$:

$$\operatorname{prox}_{\iota_V}(z) = \Pi_V(z) = z - A^T (AA^T)^{-1} (Az - b)$$

Piece-wise linear function

• Define $h_i : \mathbb{R} \to \overline{\mathbb{R}}$ is

$$h_i(x) = \begin{cases} c_l(l-x) & \text{ if } x \leq l \\ 0 & \text{ if } l \leq x \leq u \\ c_u(x-u) & \text{ if } x \geq u \end{cases}$$

where $c_l, c_u \in (0, \infty]$ (∞ included) and $l \leq u$

• graphical representations of different h_i

- special cases of h_i
 - hinge loss (SVM)
 - upper and lower bounds
 - "soft" upper and lower bounds
 - absolute value

Prox of h_i

• Prox of h_i :

$$\operatorname{prox}_{\gamma h_i}(z) = \begin{cases} z + \gamma c_l & \text{if } z \leq l - \gamma c_l \\ l & \text{if } l - \gamma c_l \leq z \leq l \\ z & \text{if } l \leq z \leq u \\ u & \text{if } u \leq z \leq u + \gamma c_u \\ z - \gamma c_u & \text{if } z \geq u + \gamma c_u \end{cases}$$

• Graphical representation $(l = -1, u = 1.5, \gamma c_l = 1, \gamma c_u = 2)$:

Examples prox h_i

• Hinge loss, $g = h_i$ with l = 1, $u = \infty$, $c_l = 1$, $c_u = 0$:

$$\operatorname{prox}_{\gamma g}(z) = \begin{cases} z + \gamma & \text{if } z \leq 1 - \gamma \\ 1 & \text{if } 1 - \gamma \leq z \leq 1 \\ z & \text{if } z \geq 1 \end{cases}$$

• Absolute value, $g = h_i$ with l = u = 0 and $c_l = c_u = 1$:

$$\operatorname{prox}_{\gamma g}(z) = \begin{cases} z + \gamma & \text{if } z \leq -\gamma \\ 0 & \text{if } -\gamma \leq z \leq \gamma \\ z - \gamma & \text{if } z \geq \gamma \end{cases}$$

• Upper and lower bounds, $g = h_i$ with l < u and $c_l = c_u = \infty$:

$$\mathrm{prox}_{\gamma g}(z) = \begin{cases} l & \text{if } z \leq l \\ z & \text{if } l \leq z \leq u \\ u & \text{if } u \leq z \end{cases}$$

Prox of separable functions

• Separable functions $g(x) = \sum_{i=1}^{n} g_i(x_i)$ where $x = (x_1, \dots, x_n)$:

$$\mathrm{prox}_{\gamma g}(z) = \begin{pmatrix} \mathrm{prox}_{\gamma g_1}(z_1) \\ \vdots \\ \mathrm{prox}_{\gamma g_n}(z_n) \end{pmatrix}$$

- \bullet Decomposes into n individual proxes
- 1-norm $||x||_1$, upper/lower bounds, hinge loss constructed from h_i

Some prox/gradient computational costs

$g:\mathbb{R}^n\to\mathbb{R}^n$	prox cost	grad cost	comment
$\frac{1}{2}x^THx + h^Tx$	$O(n^3)$	$O(n^2)$	Sparse H cheaper prox ${\cal O}(n^2)$ after factorization
$\frac{1}{2} \ Ax - b\ _2^2$	$O(m^2n)$	O(mn)	$A \in \mathbb{R}^{m imes n}$, $m \leq n$ Sparse A cheaper prox $O(mn)$ after factorization
$rac{1}{2} \ x\ ^2 \ x\ $	$O(n) \ O(n)$	O(n)	
$\iota_{\{x:Ax=b\}}$	$O(m^2n)$	-	$A \in \mathbb{R}^{m imes n}$, $m \leq n$ Sparse A cheaper
$\sum_{i=1}^{n} h_i(x_i)$	O(n)	-	1-norm, upper/lower bounds hinge loss
$\sum_i \log(1 + e^{-y_i x_i})$??	O(n)	Logistic loss prox requires iterative method

These and more implemented in ProximalOperators package in Julia

Pre and post compositions

- Precomposition with $A \in \mathbb{R}^{m \times n}$: g(x) = f(Ax)
 - Gradient cost: $O(mn) + cost(\nabla f)$
 - Prox cost: typically higher than for f
- Postcomposition with A: $g(x) = \inf(f(y) : Ay = x)$
 - Not differentiable even if f is
 - Prox cost: typically higher than for f

Prox as resolvent

• The proximal operator satisfies

$$\operatorname{prox}_{\gamma g} = (I + \gamma \partial g)^{-1}$$

where

- ∂g is the subdifferential operator
- $(\cdot)^{-1}$ is the inverse operator
- $(I + \gamma \partial g)^{-1}$ is called the *resolvent*
- Reason: optimality condition for the prox-computation:

$$x = \operatorname{prox}_{\gamma g}(z) \qquad \Leftrightarrow \qquad$$

$$x = \operatorname*{argmin}_{x} \{g(x) + \frac{1}{2\gamma} \|x - z\|^2\} \qquad \Leftrightarrow \qquad$$

$$0 \in \gamma \partial g(x) + x - z \qquad \Leftrightarrow \qquad$$

$$z \in (I + \gamma \partial g)x \qquad \Leftrightarrow x = (I + \gamma \partial g)^{-1}z \qquad \Leftrightarrow$$

Outline – Large-scale optimization methods

- Examples of large-scale problems
- Algorithm building blocks

• Problem formulation

- A unified fixed-point interpretation view
 - Forward-backward and Douglas-Rachford fixed-point mappings
 - Necessary and sufficient conditions for convergence
 - Some algorithm examples
 - A contraction factor result
- A tiny numerical example (time permitting)

Problem formulations

• Most algorithms solve problems of the form

 ${\rm minimize} \ f(x) + g(x) \\$

where f,g may be extended-valued: $f,g:\mathbb{R}^n\to\mathbb{R}\cup\{\infty\}$

• Models e.g., constrained problems through

minimize $f(x) + \iota_C(x)$

where ι_C is indicator function for set C

Consensus formulation

• What if we want to solve problems of the form

minimize
$$\frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

• One approach is to use consensus formulation:

minimize
$$\underbrace{\frac{1}{n}\sum_{i=1}^{n}f_{i}(x_{i})}_{f(\mathbf{x})} + \underbrace{\iota_{C}(x_{1},\ldots,x_{n})}_{g(\mathbf{x})}$$

with individual x_i for each f_i and a consensus constraint

$$C := \{(x_1,\ldots,x_n) : x_1 = \cdots = x_n\}$$

- Problem reduces to two function problem from before
- (Also called divide and concur)

Outline – Large-scale optimization methods

- Examples of large-scale problems
- Algorithm building blocks
- Problem formulation
- A unified fixed-point interpretation view
 - Forward-backward and Douglas-Rachford fixed-point mappings
 - Necessary and sufficient conditions for convergence
 - Some algorithm examples
 - A contraction factor result
- A tiny numerical example (time permitting)

Algorithms – An abstract view

• Most algorithms translate problem to fixed-point problem:

```
find x^{\star} such that Tx^{\star} = x^{\star}
```

where T is referred to as fixed-point operator (mapping)

- Fixed-points of ${\boldsymbol{T}}$ have close relationship to solution of problem
- Most algorithms are based on one of the following:
 - The forward-backward map
 - The Douglas-Rachford map

The forward-backward map

• Assume ∇f is Lipschitz and f is convex, g is convex, then (CQ)

$$\begin{split} x \in \operatorname{argmin} \{f(x) + g(x)\} &\Leftrightarrow 0 \in \nabla f(x) + \partial g(x) \\ &\Leftrightarrow -\gamma \nabla f(x) \in \nabla + \gamma \partial g(x) \\ &\Leftrightarrow (I - \gamma \nabla f) x \in (I + \gamma \partial g) x \\ &\Leftrightarrow (I + \gamma \partial g)^{-1} (I - \gamma \nabla f) x \in x \\ &\Leftrightarrow \operatorname{prox}_{\gamma g} (I - \gamma \nabla f) x = x \end{split}$$

- The map $\mathrm{prox}_{\gamma g}(I-\gamma \nabla f)$ is the FB map
- Its fixed-points coincide with solutions to optimization problem
- Reverse order gives backward-forward operator $(I \gamma \nabla f) \operatorname{prox}_{\gamma q}$:

$$\operatorname{Argmin}\{f(x) + g(x)\} = \operatorname{prox}_{\gamma g} \left(\operatorname{Fix}\left((I - \gamma \nabla f) \operatorname{prox}_{\gamma g}\right)\right)$$

where $\operatorname{Fix} T = \{x : x = Tx\}$

The Douglas-Rachford map

- Let $R_{\gamma f} = 2 \text{prox}_{\gamma f} I$ be the *reflector* or *reflected resolvent*
- It can be shown that

$$\operatorname*{Argmin}_{x} \{f(x) + g(x)\} = \operatorname{prox}_{\gamma g}(\operatorname{Fix} R_{\gamma f} R_{\gamma g})$$

- The composition of reflected resolvents $R_{\gamma f}R_{\gamma g}$ is DR map
- Fixed-point solves optimization problem after prox-step

Why these mappings?

- They have the favorable property of being nonexpansive
- Forward-backward operator
 - Assume f, g convex, ∇f *L*-Lipschitz, and $\gamma \in (0, \frac{1}{2L})$
 - Then $\operatorname{prox}_{\gamma}(I \gamma \nabla f)$ is nonexpansive
- Douglas-Rachford operator
 - Assume f,g convex and $\gamma \in (0,\infty)$
 - Then $R_{\gamma f}R_{\gamma g}$ is nonexpansive
- Reason, building blocks have similar favorable properties

Nonexpansive

• The operators T are nonexpansive: for all x, y:

$$||Tx - Ty|| \le ||x - y||$$

- Let $y=\bar{x}$ where $\bar{x}=T\bar{x}$ is a fixed-point to T, then

$$\|Tx - \bar{x}\| \le \|x - \bar{x}\|$$

• 2D graphical representation

ked point not increased)

Iterating T

• The iteration

$$x^{k+1} = Tx^k$$

is not guaranteed to converge to a fixed-point

• Example: T is a rotation

• Why is nonexpansiveness a useful property?

The role of α -averaging

• We consider averaged iteration of the nonexpansive mapping T:

$$x^{k+1} = (1-\alpha)x^k + \alpha T x^k$$

where $\alpha \in (0,1)$

• 2D example on where x^{k+1} can end up for different α $(\bar{x} \in FixT)$:

Property of α -averaged operator

• Let $S=(1-\alpha)I+\alpha T$ and $x^{k+1}=Sx^k,$ then it can be shown

$$\|x^{k+1} - z\|^2 \le \|x^k - z\|^2 - \beta \|x^k - Sx^k\|^2$$

for all $z \in \operatorname{Fix} S = \operatorname{Fix} T$ and some $\beta > 0$

- + $\|x^k-z\|^2$ is Lyapunov function and $\|x^k-Sx^k\|$ gives decrease
- Consequence:
 - $(||x^k z||)_{k \ge 0}$ converges for all $z \in FixT$
 - $||x^k Sx^k|| = \alpha ||x^k Tx^k|| \to 0 \text{ as } k \to \infty$

which is sufficient to show convergence towards a fixed-point

Many different ways to find fixed-point

• Many algorithms for large-scale optimization are of the form:

$$z^{k+1} := (1 - \alpha)z^k + \alpha \hat{T} z^k = z^k - \alpha (z^k - \hat{T} z^k)$$

where $\alpha \in (0,1)$ and \hat{T} is either:

- The full operator T (large-scale)
- A randomized coordinate block update operator of T (huge-scale)
- A stochastic approximation of T (huge-scale)
- The expected z^{k+1} given z^k for both stochastic methods satisfy:

$$\mathbb{E}_k z^{k+1} = z^k - \alpha (z^k - T z^k)$$

they are unbiased stochastic versions of the full operator method

Finding fixed-point of nonexpansive mapping

- The sufficient conditions:
 - 1. $(||z x^k||)_{k \ge 0}$ converges for all $z \in FixT$
 - 2. $||Tx^k x^k|| \to 0$ as $k \to \infty$

are also necessary conditions

• All orbits from algorithms that find fixed-point satisfy these

How to guarantee conditions – Deterministic case

• A Lyapunov function of the form

$$||z^{k+1} - z^{\star}||_2^2 + \kappa_{k+1} \le ||z^k - z^{\star}||_2^2 + \kappa_k - \gamma_k$$

where $\gamma_k \ge 0$ and $\kappa_k \ge 0$ satisfy

- $\gamma_k \to 0$ implies $||Tx^k x^k|| \to 0$
- $||Tx^k x^k|| \to 0$ implies $\kappa_k \to 0$
- Easy to verify that

 $(\gamma_k)_{k\geq 0}$ is summable and $(\|z^k - z^\star\|^2 + \kappa_k)_{k\geq 0}$ converges

therefore $||Tx^k - x^k|| \to 0$ and $\kappa_k \to 0$ which implies

 $\|Tx^k - x^k\| \to 0$ and $(\|z^k - z^\star\|^2)_{k \ge 0}$ converges

i.e., $z^k \to \operatorname{Fix} T$

How to guarantee conditions - Stochastic case

• A stochastic Lyapunov function of the form

$$\mathbb{E}_{k} \| z^{k+1} - z^{\star} \|_{2}^{2} + \kappa_{k+1} \le \| z^{k} - z^{\star} \|_{2}^{2} + \kappa_{k} - \gamma_{k}$$

where $\gamma_k \ge 0$ and $\kappa_k \ge 0$ as before

• The Robbins-Siegmund supermartingale theorem guarantees (a.s.)

$$(\gamma_k)_{k\geq 0}$$
 is summable and $(\|z^k - z^\star\|^2 + \kappa_k)_{k\geq 0}$ converges

which (by same arguments as before) implies $z^k \to \text{Fix}T$ a.s.

Forward-backward splitting

- Solves: minimize f(x) + g(x)
- Applicable when f is Lipschitz differentiable
- Full update algorithm: Iterates forward-backward map:

$$x^{k+1} = Tx^k = \operatorname{prox}_{\gamma g}(I - \gamma \nabla f)x^k$$

(i.e., uses $\alpha = 1$ since mapping already averaged)

- One forward (gradient) step and one backward (prox) step
- Special case: (projected) gradient method
- Converges to solution of optimization problem
- Cutting the algorithm differently gives backward-forward method:

$$z^{k+1} = (I - \gamma \nabla f) \operatorname{prox}_{\gamma g} z^k$$

Douglas-Rachford splitting

- Solves: minimize f(x) + g(x)
- \bullet Applicable when f and g are proper closed convex
- Averaged iteration of Douglas-Rachford map with $\alpha \in (0,1)$:

$$z^{k+1} = (1-\alpha)z^k + \alpha(2\mathrm{prox}_{\gamma f} - I)(2\mathrm{prox}_{\gamma g} - I)z^k$$

- Two backward (prox) steps
- Converges to fixed-point z^{\star} of DR operator T
- Solution to optimization problem is $\mathrm{prox}_{\gamma g} z^{\star}$

Alternating direction method of multipliers (ADMM)

• Solves:

minimize
$$f(x) + g(y)$$

subject to $Ax + By = c$

which is equivalent to solve: minimize $\hat{f}(z) + \hat{g}(z)$, where

$$\hat{f}(z) = \inf_{x} (f(x) : Ax = -z), \quad \hat{g}(z) = \inf_{y} (g(y) : By = c + z)$$

- Applicable when f and g are proper closed convex
- ADMM is averaged iteration of DR map applied to \hat{f} and \hat{g} :

$$z^{k+1} = (1-\alpha)z^k + \alpha(2\operatorname{prox}_{\gamma\hat{f}} - I)(2\operatorname{prox}_{\gamma\hat{g}} - I)z^k$$

- Two backward (prox) steps on more complicated image functions
- If A = I, B = -I, and c = 0, ADMM=DR

ADMM cont'd

• Algorithm becomes (if subproblems can be solved):

$$\begin{aligned} x^k &:= \operatorname*{argmin}_x (f(x) + \frac{1}{2\gamma} \|Ax + z^k\|_2^2) \\ y^k &:= \operatorname*{argmin}_y (g(y) + \frac{1}{2\gamma} \|By + 2Ax^{k+1} + z^k - c\|_2^2) \\ z^{k+1} &:= z^k + 2\alpha (Ax^{k+1} + By^{k+1} - c) \end{aligned}$$

• It can also for $\alpha = \frac{1}{2}$ be implemented as

$$y^{k+1} := \underset{y}{\operatorname{argmin}} (g(y) + \frac{1}{2\gamma} \|Ax^{k} + By - c + \gamma \lambda^{k}\|_{2}^{2})$$
$$x^{k+1} := \underset{x}{\operatorname{argmin}} (f(x) + \frac{1}{2\gamma} \|Ay + Bz^{k+1} - c + \gamma \lambda^{k}\|_{2}^{2})$$
$$\lambda^{k+1} := \lambda^{k} + \gamma^{-1} (Ax^{k+1} + By^{k+1} - c)$$

(this is standard formulation of ADMM)

Block-coordinate methods

• Decompose the T operator into m blocks:

$$T = \begin{pmatrix} (T)_1 \\ \vdots \\ (T)_m \end{pmatrix}$$

- Randomized block-coordinate update algorithm:
 - 1. Select an index $j \in \{1, ..., m\}$ at random with probabilities q_j
 - 2. Update block j according to:

$$z_j^{k+1} := z_j^k - \frac{\alpha}{q_j} (z_j^k - (T)_j z^k)$$

3. Leave the others: $z_i^{k+1}=z_i^k$ for all $i\neq j$

• Let $\widetilde{T}_j = (I_1, \ldots, (T_j), \ldots, I_m)$: Expected value of z^{k+1} given z^k :

$$\mathbb{E}_k z^{k+1} = \mathbb{E}_k (z^k - \frac{\alpha}{q_j} (z^k - \widetilde{T}_j z^k)) = z^k - \sum_{j=1}^m \frac{q_j \alpha}{q_j} (z^k - \widetilde{T}_j z^k)$$
$$= z^k - \alpha (z^k - T z^k)$$

- Randomization is needed to guarantee convergence (a.s.) 36
- Efficient if m steps of block-method as expensive as one eval of T

Algorithm examples

- Forward-backward if g separable coordinate gradients of f cheap
- Consensus formulation and Douglas-Rachford
- Consensus formulation and backward-forward (Finito/MISO)

Stochastic backward-forward method

• Consider problems of the form

minimize
$$\frac{1}{n}\sum_{i=1}^n f_i(x) + g(x)$$

where f_i have L_i -Lipschitz gradients and g is prox-friendly

• Consider the backward-forward operator

$$T = (I - \gamma \nabla f) \operatorname{prox}_{\gamma g} = \frac{1}{n} \sum_{i=1}^{n} (I - \gamma \nabla f_i) \operatorname{prox}_{\gamma g}$$

- Algorithm with stochastic approximation of T:
 - 1. Randomly select an index $i \in \{1, \ldots, n\}$ with probability p_i
 - 2. Set: $z^{k+1} := z^k \frac{\alpha_k}{np_i}(z^k (I \gamma \nabla f_i) \operatorname{prox}_{\gamma g} z^k)$
- Expected value of z^{k+1} given z^k with $T_i := (I \gamma \nabla f_i) \operatorname{prox}_{\gamma g}$ is:

$$\mathbb{E}_k z^{k+1} = z^k - \mathbb{E}_k \frac{\alpha_k}{np_j} (z^k - T_i z^k) = z^k - \alpha_k (z^k - T z^k)$$

- Advantage: Cheaper iterations than using ∇f if n large
- Drawback: Requires diminishing step-sizes to converge

Reduced variance stochastic methods

- Reduce variance by remembering old gradients $abla f_i x^{k-d_k}$
- An algorithm (SAGA):
 - 1. Select an index $i \in \{1, \ldots, n\}$ at random with probabilities p_i
 - 2. Update z and w-vectors according to:

$$z^{k+1} := w^{k} - \gamma \left(\frac{1}{np_{i}} \nabla f_{i}(w^{k}) - \frac{1}{np_{i}} y_{i}^{k} + \frac{1}{n} \sum_{j=1}^{n} y_{j}^{k} \right)$$
$$w^{k+1} := \operatorname{prox}_{\gamma g} z^{k+1}$$

3. Update *y*-vectors according to:

$$y_i^{k+1} = \nabla f_i(w^k)$$

4. Leave the others: $y_i^{k+1} = y_i^k$ for all $i \neq j$ • Expected value of z^{k+1} given z^k and y_i^k is:

$$\mathbb{E}_k z^{k+1} = w^k - \frac{\gamma}{n} \sum_{j=1}^n y_j^k - \sum_{i=1}^n p_i (\frac{\gamma}{np_i} \nabla f_i(w^k) - \frac{\gamma}{np_i} y_i^k)$$
$$= w^k - \gamma \nabla f(w^k) = (I - \gamma \nabla f) \operatorname{prox}_{\gamma g} z^k$$

- Converges (a.s.) with fixed (but restricted) step-size
- Many variations in how and which y-vectors that are updated exist

RVSBC methods

- RVSBC Reduced Variance Stochastic Block Coordinate
- Combine reduced variance and block coordinate methods

Caveats

- Algorithm parameters much be chosen to guarantee convergence!
- Stochastic methods should be implemented in real language In MATLAB, performance benefits not revealed due to for loops

A contraction factor result

- Recently many linear convergence results for ADMM when:
 - f strongly convex, differentiable, and ∇f Lipschitz
 - g convex (possibly extended-valued)
- Reason: The DR-map $R_{\gamma f}R_{\gamma g}$ becomes contractive

Example: LASSO

• Consider the LASSO problem:

minimize
$$\underbrace{\frac{1}{2} \|Ax - b\|_2^2}_{f(x)} + \underbrace{\lambda \|x\|_1}_{g(x)}$$

with $A \in \mathbb{R}^{m \times n}$ and m < n

- f is differentiable with $\|A\|^2\text{-Lipschitz gradient}$
- 1-norm non-differentiable \Rightarrow must use prox
- Can apply forward backward or Douglas-Rachford algorithm
- Possible (full operator) building blocks

$$\begin{split} \nabla f(z) &= A^T (Az - b) & O(mn) \\ \mathrm{prox}_{\gamma f}(z) &= (I + \gamma A^T A)^{-1} (z + \gamma A^T b) & O(nm^2) \; (O(nm)) \\ \mathrm{prox}_{\gamma g}(z) &= \begin{cases} z + \gamma & \text{if } z \leq -\gamma \\ 0 & \text{if } -\gamma \leq z \leq \gamma \\ z - \gamma & \text{if } z \geq \gamma \end{cases} \quad O(n) \end{split}$$

LASSO: FB and DR

• Forward-backward algorithm (O(mn) / iter):

$$z^k := x^k - \gamma A^T (Ax^k - b)$$
$$x^{k+1} := \operatorname{prox}_{\gamma \lambda \| \cdot \|_1} (z^k)$$

• Douglas-Rachford algorithm $(O(m^2n) \text{ first iter, then } O(mn))$:

$$\begin{aligned} x^k &:= (I + \gamma A^T A)^{-1} (z^k + \gamma A^T b) \\ y^k &:= \operatorname{prox}_{\gamma \lambda \| \cdot \|_1} (2x^k - z^k) \\ z^{k+1} &:= z^k + \alpha (y^k - x^k) \end{aligned}$$

LASSO: Coordinate update method

• The forward-backward operator has block-structure:

$$Tx^{k} = \begin{pmatrix} \operatorname{prox}_{\gamma\lambda|\cdot|}(x_{1}^{k} - a_{1}^{T}(Ax^{k} - b)) \\ \vdots \\ \operatorname{prox}_{\gamma\lambda|\cdot|}(x_{n}^{k} - a_{n}^{T}(Ax^{k} - b)) \end{pmatrix}$$

where $a_i \in \mathbb{R}^m$ are columns of $A \in \mathbb{R}^{m \times n}$: $A = [a_1, a_2, \dots, a_n]$

- Blocks seem expensive to evaluate due to $\boldsymbol{A}\boldsymbol{x}^k-\boldsymbol{b}$
- Due to linearity, can store and update $Ax^k b$ according to

$$Ax^{k} - b = (Ax^{k-1} - b) + A(x^{k} - x^{k-1})$$
$$= (Ax^{k-1} - b) + \underbrace{a_{j_{k-1}}(x^{k}_{j_{k-1}} - x^{k-1}_{j_{k-1}})}_{Ax^{k-1}}$$

cheap update

where last step holds since only $\boldsymbol{x}_{j_{k-1}}$ updated

- Complexity per iteration: O(m)
- $\bullet\,$ Can run roughly n iterations at cost of one FB iteration

LASSO: Reduced variance stochastic gradient

• To fit algorithm, write LASSO problem equivalently (divide by m):

minimize
$$\underbrace{\frac{1}{2m}\sum_{i=1}^{m}(a_{i}^{T}x-b_{i})^{2}}_{f(x)}+\underbrace{\frac{\lambda}{m}\|x\|_{1}}_{g(x)}$$

where $a_i \in \mathbb{R}^n$ now are rows of $A \in \mathbb{R}^{m \times n}$: $A = [a_1^T, \dots, a_n^T]^T$ • The gradient can be written as:

$$\nabla f(x) = \frac{1}{m} \sum_{i=1}^{m} a_i (a_i^T x - b_i)$$

• The backward-forward operator is

$$T = (I - \gamma \nabla f) \operatorname{prox}_{\gamma g} = \frac{1}{m} \sum_{i=1}^{m} (I - \frac{\gamma}{m} a_i (a_i^T(\cdot) - b_i)) \operatorname{prox}_{\frac{\gamma \lambda}{m} \|\cdot\|_1}$$

LASSO: Reduced variance stochastic gradient

- SAGA algorithm:
 - 1. Select an index $i \in \{1, ..., n\}$ at random with probabilities p_i
 - 2. Update z and w-vectors according to:

$$z^{k+1} := w^k - \alpha \left(\frac{1}{np_i} a_i (a_i^T w^k - b_i) - \frac{1}{np_i} y_i^k + \frac{1}{n} \sum_{j=1}^n y_j^k \right)$$
$$w^{k+1} := \operatorname{prox}_{\alpha g} z^{k+1}$$

3. Update *y*-vectors according to:

$$y_i^{k+1} = a_i(a_i^T w^k - b_i)$$

4. Leave the others: $y_i^{k+1} = y_i^k$ for all $i \neq j$

- In practice: Store $(a_i^T w^k b_i) \in \mathbb{R}$ and multiply by a_i when used
- Complexity per iteration: O(n)
- $\bullet\,$ Can run roughly m iterations of at same cost as one FB iteration

Numerical example

Randomly generated $A \in \mathbb{R}^{m \times n}$ with m = 250, n = 300:

Algorithm	FB	DR	CD	SAGA
Cost/iter	O(mn)	$O(m^2n), O(mn)$	O(m)	O(n)
lters	542	107	33315	62848
Weighted iters	542	357	111	251

Randomly generated $A \in \mathbb{R}^{m \times n}$ with m = 50, n = 300:

Algorithm	FB	DR	CD	SAGA
Cost/iter	O(mn)	$O(m^2n), O(mn)$	O(m)	O(n)
lters	1644	199	35376	77714
Weighted iters	1664	249	118	1554

Thank you

Questions?