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Simple Example

minimize
x

F̄1(x1, x3) + F̄2(x1, x2, x4)+

F̄3(x4, x5) + F̄4(x3, x4) + F̄5(x3, x6, x7) + F̄6(x3, x8). (1)

Has sparsity graph (edge between vertexes if components in same
term)



Clique Tree for Sparsity Graph

We now assign one computational agent for each clique, and we
may assign F̄i to an agent if and only if the indexes of its variables
belong to the corresponding clique. Hence we can assign F̄1 + F̄4
to C2, F̄2 to C1, F̄3 to C3, F̄5 to C4 and F̄6 to C5. (Not unique
assignment)



Message Passing or Dynamic Programming over Trees
Start with the leaves and compute for agents 3, 4, and 5

m31(x4) = min
x5

{
F̄3(x4, x5)

}
(2)

m42(x3) = min
x6,x7

{
F̄5(x3, x6, x7)

}
(3)

m52(x3) = min
x8

{
F̄6(x3, x8)

}
(4)

Then add the results from agents 4 and 5 to the functions of
Agent 2 and compute

m21(x1, x4) = min
x3

{
F̄1(x1, x3) + F̄4(x3, x4) + m42(x3) + m52(x3)

}
(5)

Finally add the results from agents 2 and 3 to the functions of
Agent 1 and compute

min
x1,x2,x4

{
F̄2(x1, x2, x4) + m31(x4) + m21(x1, x4)

}



Comments

I Not easy in general to compute messages or value functions
mi ,j .

I For linearly constrained convex quadratic problems the
messages are convex quadratic functions with equality
constraints.

I The dual variables can also be recovered.

I In fact results in a multi-frontal factorization technique for the
KKT saddle point problem.

I Can be used to compute search directions in IP methods

I All other computations in an IP algorithm also distribute over
the clique tree.

I In total 6 upward and 6 downward passes through the clique
tree, of which only one pass involves significant computations,
for each iteration in an IP algorithm



Interior-Point Methods

Consider the QP

min
z

1

2
zTQz + qT z (6)

s.t. Az = b (7)

Dz ≤ e (8)

where Q � 0, and A has full row rank.

KKT optimality conditions:
Q AT DT

A
D I

M



z
λ
µ
s

 =


−q
b
e
0

 (9)

and (µ, s) ≥ 0, where M = diag(µ).



Search Directions

Linearize: 
Q AT DT

A
D I

S M




∆z
∆λ
∆µ
∆s

 =


rz
rλ
rµ
rs

 (10)

where S = diag(s), and where r = (rz , rλ, rµ, rs) is residual vector.



Reduced KKT system

Equivalently ∆s = rµ −D∆z , ∆µ = S−1(rs −M∆s) and[
Q+DTS−1MD AT

A

] [
∆z
∆λ

]
=

[
rz −DTS−1(rs −Mrµ)

rλ

]
.

(11)
Unique solution iff

Qs = Q+DTS−1MD (12)

is positive definite on the null-space of A.



Parametric QPs

Consider

min
z

1

2
zTMz + mT z (13)

s.t. Cz = d (14)

with C full row rank and M � 0.

KKT conditions: [
M CT

C

] [
z
λ

]
=

[
−m
d

]
.

with unique solution if and only if M + CTC � 0.



Partitioned Problem

Let

M =

[
Q S
ST R

]
; C =

[
A B

D

]
; d =

[
e
f

]
; m =

[
q
r

]
; z =

[
x
y

]
with A full row rank.

Solve

min
x

1

2

[
x
y

]T [
Q S
ST

] [
x
y

]
+ qT x (15)

s.t. Ax + By = e (16)

parametrically with respect to all y .



KKT Conditions for Parametric Problem

[
Q AT

A

] [
x
µ

]
=

[
−q − Sy
e − By

]
.

I Solution x will be affine in y

I Results in a quadratic message in y .

I The 1,1-block of M + CTC is Q + ATA, which by the Schur
complement formula is positive definite, which implies unique
solution



Rank Condition

In case A does not have full row rank, perform a rank-revealing
factorization [

Ā1

0

]
x +

[
B̄1

B̄2

]
y =

[
ē1
ē2

]
and append the constraint B̄2y = ē2 to belong to

Dy = f .



Model Predictive Control (MPC)

min
u

1

2

N−1∑
k=0

[
xk
uk

]T
Q

[
xk
uk

]
+

1

2
xTN SxN (17)

s.t. xk+1 = Axk + Buk , x0 = x̄ (18)

where Q � 0 and S � 0

Let ICk (xk , uk , xk+1) be indicator function for

Ck = {(xk , uk , xk+1) | xk+1 = Axk + Buk}

and ID(x0) indicator function for

D = {x0 | x0 = x̄}



Equivalent Formulation

min
x

F̄1(x0, u0, x1) + · · ·+ F̄N(xN−1, uN−1, xN), (19)

where

F̄1(x0, u0, x1) = ID(x0) +
1

2

[
x0
u0

]T
Q

[
x0
u0

]
+ IC0(x0, u0, x1)

F̄k+1(xk , uk , xk+1) =
1

2

[
xk
uk

]T
Q

[
xk
uk

]
+ ICk (xk , uk , xk+1)

F̄N(xN−1, uN−1, xN) =
1

2

[
xN−1
uN−1

]T
Q

[
xN−1
uN−1

]
+ ICN−1

(xN−1, uN−1, xN)

+
1

2
xTN SxN



Sparsity Graph and Clique Tree

x0

u0

x1

u1

x2

u2

x3

1 C1 = {x0, u0, x1}

2 C2 = {x1, u1, x2}

3 C3 = {x2, u2, x3}

Assign F̄k to Ck .

Can just as well take C2 or C3 as root!



Parallel Computations

Same problem as before but with N = 6.

Dummy variables ū0 and ū1 and consensus constraints:

ū0 = x3, ū1 = x6.

Similar to Nielsen (2017). Define

C−1 = {x0 : x0 = x̄}
Ck = {(xk , uk , xk+1) : xk+1 = Axk + Buk}; k = 0, 1

C2 = {(x2, u2, ū0) : ū0 = Ax2 + Bu2}
Ck = {(xk , uk , xk+1) : xk+1 = Axk + Buk}; k = 3, 4

C5 = {(x5, u5, ū1) : ū1 = Ax5 + Bu5}
D0 = {(x3, ū0) : ū0 = x3}
D1 = {(x6, ū1) : ū1 = x6}.

(20)



Equivalent Problem

min
u

1

2

1∑
k=0

[
xk
uk

]T
Q

[
xk
uk

]
+ ICk{xk , uk , xk+1}+ (21)

1

2

[
x2
u2

]T
Q

[
x2
u2

]
+ IC2{x2, u2, ū0}+

1

2

4∑
k=3

[
xk
uk

]T
Q

[
xk
uk

]
+ ICk{xk , uk , xk+1}+

1

2

[
x5
u5

]T
Q

[
x5
u5

]
+ IC5{x5, u5, ū1}+

1

2
ūT1 Sū1+

IC−1{x0}+ ID0{x3, ū0}+ ID1{x6, ū1}



Sparsity Graph
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Clique Tree

1 C1 = {x0, ū0, x3, ū1, x6}

2C2 = {x0, u0, x1, ū0}

4C3 = {x1, u1, x2, ū0}

6C4 = {x2, u2, ū0}

3 C5 = {x3, u3, x4, ū1}

5 C6 = {x4, u4, x5, ū1}

7 C7 = {x5, u5, ū1}



Clique Tree with Four Parallel Branches

{x0, ū0, x3}

{x0, u0, x1, ū0}

{x1, u1, x2, ū0}

{x2, u2, ū0}

{x3, ū1, x6}

{x3, u3, x4, ū1}

{x4, u4, x5, ū1}

{x5, u5, ū1}

{x6, ū2, x9}

{x6, u6, x7, ū2}

{x7, u7, x8, ū2}

{x8, u8, ū2}

{x9, ū3, x12}

{x9, u9, x10, ū3}

{x10, u10, x11, ū3}

{x11, u11, ū3}



Merging of Cliques

{x0, u0, x1, u1, x2, u2, ū0, x3}

{x3, u3, x4, u4, x5, u5, ū1, x6}

{x6, u6, x7, u7, x8, u9, ū2, x9}

{x9, u9, x10, u10, x11, u11, ū3, x12}



Stochastic MPC

I d is the number of stochastic events that can take place at
each time stage k

I r is the number of time stages for which we consider
stochastic events to take place.

I Outcomes of the stochastic events are the different values of
Aj
k , B j

k and v jk .

I Number of scenarios is M = d r



Optimization Problem

min
u

M∑
j=1

ωj

1

2

N−1∑
k=0

[
x jk
ujk

]T
Q

[
x jk
ujk

]
+

1

2
(x jN)TSx jN

 (22)

s.t. x jk+1 = Aj
kx

j
k + B j

ku
j
k + v jk , x j0 = x̄ (23)

C̄u = 0 (24)

where u = (u1, u2, . . . , uM) with uj = (uj0, u
j
1, . . . , u

j
N−1), and

C̄ =


C1,2 −C1,2

C2,3 −C2,3

. . .
. . .

CM−1,M −CM−1,M


with

Cj ,j+1 =
[
I 0

]
The constraint C̄u = 0 is the non-ancipativity constraint.



Comments

I Several of Aj
k , B j

k and v jk are the same

I ωj is the probability of scenario j

I Instead of x j0 = x̄ we equivalently write x10 = x̄ and x j0 = x j+1
0 ,

for 1 ≤ j ≤ M − 1.



Sparsity Graph
Case of N = 4, d = r = 2⇒ M = 4
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Make chordal embedding.



Clique Tree
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Summary

I Interior-point methods over trees based on dynamic
programming or message passing to compute search
directions.

I Needs less communication than other distributed algorithms

I More complicated than first order methods

I Model predictive control (MPC)

I Parallel MPC

I Stochastic MPC

I Also regularized MPC and robust MPC possible.
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