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Simple Example

minimize f:_1(X1,X3) + I:_2(x1,x2,X4)—|—

l—:3(X4,X5) + l—:4(X3,X4) + :E5(X3,X6,X7) + Fe(x3,x3). (1)

Has sparsity graph (edge between vertexes if components in same
term)




Clique Tree for Sparsity Graph

We now assign one computational agent for each clique, and we
may assign F; to an agent if and only if the indexes of its variables
belong to the corresponding clique. Hence we can assign Fi+F
to Gy, F to Gy, F3to Gz, F5 to G4 and Fg to Cs. (Not unique
assignment)



Message Passing or Dynamic Programming over Trees
Start with the leaves and compute for agents 3, 4, and 5

m31(X4) = ny_)n {ﬁg(X4, X5)} (2)
m42(X3) = )r(T;iXI‘; {/:_5(X3,X6,X7)} (3)
ms2(x3) = nl:}n {Fe(x3, %) } (4)

Then add the results from agents 4 and 5 to the functions of
Agent 2 and compute

mo1(x1,Xa) = nj(;n {F1(x1,x3) + Fa(x3,xa) + maz(x3) + msa(x3) }
(5)

Finally add the results from agents 2 and 3 to the functions of
Agent 1 and compute

min {Fo(x1, X2, xa) + ma1(xa) + mo1(x1,xa) }
X1,X2,X4



Comments

» Not easy in general to compute messages or value functions
mj ;.

» For linearly constrained convex quadratic problems the
messages are convex quadratic functions with equality
constraints.

» The dual variables can also be recovered.

> In fact results in a multi-frontal factorization technique for the
KKT saddle point problem.

» Can be used to compute search directions in IP methods

> All other computations in an IP algorithm also distribute over
the clique tree.

> In total 6 upward and 6 downward passes through the clique

tree, of which only one pass involves significant computations,
for each iteration in an IP algorithm



Interior-Point Methods

Consider the QP
1
minizTQz—k qu
st. Az=0»b

Dz<e

where Q > 0, and A has full row rank.

KKT optimality conditions:
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and (i, s) > 0, where M = diag(u).



Search Directions

Linearize:
Q A" DT Az ry
A A\ P
D I [Ap| | (10)
S M| |As rs

where S = diag(s), and where r = (ry, rx, ry, rs) is residual vector.



Reduced KKT system

Equivalently As =r, — DAz, Ap = S"Y(rs — MAs) and

Q+DTSIMD AT] [Az _|rz ~ DTS (rs — Mr,)
A AN r '
(11)

Unique solution iff
Qs =9+ D'S'mMD (12)

is positive definite on the null-space of A.



Parametric QPs

Consider
min%zTMz +m'z (13)
st.Cz=d (14)

with C full row rank and M > 0.
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with unique solution if and only if M + CTC > 0.

KKT conditions:



Partitioned Problem

Let

B A G A s A A

with A full row rank.

Solve
17T Q S|[x] .
S A w
st. Ax+ By =e (16)

parametrically with respect to all y.



KKT Conditions for Parametric Problem

Q AT] [x _|—q9—Sy
A w| | e—By |’
» Solution x will be affine in y

> Results in a quadratic message in y.

» The 1,1-block of M+ CTC is Q + AT A, which by the Schur
complement formula is positive definite, which implies unique
solution



Rank Condition

In case A does not have full row rank, perform a rank-revealing

factorization _ _
A1 X+ Bi| _|&a
0 B, Y= &

and append the constraint By = & to belong to

Dy = f.



Model Predictive Control (MPC)

1 N1 X X 1

. k k

min> [u } [ ] + 2XN5XN (17)
k=0

S.t. Xpr1 = Axx + Bug, xo =X (18)

where @ = 0and S >0

Let Z¢, (xk, uk, xk+1) be indicator function for

Cr = {(Xks Uks Xk41) | Xk+1 = Axk + Bug}

and Zp(xp) indicator function for

'D:{X()‘Xo:)_(}



Equivalent Formulation

mXin Ifl(xo, ug,x1) + -+ ﬁN(XNfla UN-1, XN); (19)

where

.

_ 1 |x X

F1(xo, uo,x1) = Ip(x0) + > { 0} Q { 0] + Z¢y(x0, o, X1)
uo o

.
_ 1 |x X
Fret1 (X, Uks Xie1) = 5 [uﬂ Q [uﬂ + Ze, (Xk, Uk, Xi41)

T
_ 1 [xpn_ XN—
FN(XN—17 UN_1,XN) = 5 |:Ux 1] Q |:Ux 1:| +ICN_1(XN—1a UN—laXN)

1
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Sparsity Graph and Clique Tree

X0
Up
C]. - {XO; IJO,Xl}
X1
i C2 — {Xla U1,X2}
X2
up G = {x2, u2,x3}
X3

Assign F_k to Cy.

Can just as well take C, or C3 as root!



Parallel Computations

Same problem as before but with N = 6.
Dummy variables &ip and &7 and consensus constraints:

Up =x3, U] =Xg.

Similar to Nielsen (2017). Define

C1= {Xo X0 = f(}

Cr = {(Xk> Uk, Xk41) = X1 = Ax + Bu}; k=0,1

2 = {0 2,30 : 50 = Aoy + B}

Ch = {(xk s Xk+1) = Xka1 = Axe + Bu}s k=34 (20)
Cs = {(xs, us, 1) : 01 = Axs + Bus}

Do = {(x3, o) : o = x3}

D1 = {(%, 01) : 01 = X6}



Equivalent Problem

min

1 T
X X
S (] o]+ 2oy +

u
P k
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(21)



Sparsity Graph




Clique Tree

(1) G = {x0, o, x3, 1, X6}

G = {x0, u0,x1, @0} (2)  (3) Gs = {x3, u3, xa, i }
C3 :{X17u17X27L_10} C6 — {X4,U4,X5,ﬁ1}

C4={X2,U2,L_lo} e G = {X5,U5,171}



Clique Tree with Four Parallel Branches

{x0, Uo, x3}

{x0, uo, x1, o }
{x1,u1,%, 0o} {x3, 01, X6 }
{x2, U2, o} O {x3, u3, xq, U1 }

{X4,U4,X5,L_11} {X67U27X9}

{X5,U5,l7]_} {X6,U6,X7,l72}

{x7, u7,xg, 0} {xq, U3, x12}

{xg, ug, o} I{x9, ug, x10, U3}
{x10, t10, x11, U3}

{X117 uii, L_l3}



Merging of Cliques

{X07 uop, X1, U1, X2, Uz, H07X3}

{X37 u3, X4, Usg, X5, Us, alaxﬁ}

{X67 ue, X7, U7, X8, Ug, L_I27X9}

{X97 ug, X10, U10, X11, U11, L_l3)X12}



Stochastic MPC

v

d is the number of stochastic events that can take place at
each time stage k

v

r is the number of time stages for which we consider
stochastic events to take place.

> Qutcomes of the stochastic events are the different values of
i pi

A,, B, and v,’<

Number of scenarios is M = d"

v



Optimization Problem

N-1 T -
1 x! x| 1 -
min ij (2 kzzg uﬁ; Q Ufi + E(XJ )TSXJN) (22)
stxfl_Aka{<+B{;u{;+v,{, X =% (23)
Cu= (24)

with
Gjr1=1[l 0

The constraint Cu = 0 is the non-ancipativity constraint.



Comments

» Several of AJ,'(, B{; and v{( are the same
> wj is the probability of scenario j

> Instead of xé = X we equivalently write x& = X and xé = xé“,
for1<j<M-—1.



Sparsity Graph
Caseof N=4, d=r=2=M=4

Make chordal embedding.



Clique Tree



Summary

> Interior-point methods over trees based on dynamic
programming or message passing to compute search
directions.

» Needs less communication than other distributed algorithms
» More complicated than first order methods

» Model predictive control (MPC)

» Parallel MPC

» Stochastic MPC

» Also regularized MPC and robust MPC possible.
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