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Motivation

▶ Optimize a single pumping cycle of a dual-kite
AWE system

▶ Formulate OCP

▶ Very large, complicated nonlinear problem,
need good strategy and initialization to solve

▶ Software Packages such as the AWEBox[2]
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x(·),u(·),

tf

Pgen(x, u, tf)
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Model

▶ Dual Kite Setup, two AP2 planes

▶ High-Fidelity 6-DOF model for each plane

▶ System Dynamics (Index-1 DEA)

f(x, u, z, t) = 0

with x ∈ R51, u ∈ R19, z ∈ R3, based on
Lagrangian dynamics

▶ x: 21 states per kite + 6 states connection
point + 3 auxillary
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Some Observations
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▶ In the reel-out phase, the
subcycles look similar

▶ There is some ’slow’ or ’average’
mode of the trajectory
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Strong Assumption

In the reel-out phase, the power
optimal trajectory x∗(t) and the
corresponding control u∗(t) consist of
many similar, slowly changing cycles.
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Stroboscopic Averaging Method
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... Applied to Dual Kites
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Reelin: System Dynamics

▶ Reel-out phase: Simulate the
approximated average dynamics using
stroboscopic averaging

▶ Macro-Integration of the average
dynamics with large steps

▶ Approximation of the average dynamics
using

▶ Micro-Integrations the model dynamics
over one cycle

▶ Reel-in phase: Simulate the model
dynamics
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Regularization

Strong Assumption

In the reel-out phase, the
power optimal trajectory
x∗(t) and the corresponding
control u∗(t) consist of
many similar, slowly
changing cycles.

Picture from freePik.com

Optimization of Long Trajectories of Dual-Wing AWE Systems J. Harzer, J. De Schutter, P. Rutquist and M. Diehl 9



Regularization

Strong Assumption

In the reel-out phase, the
power optimal trajectory
x∗(t) and the corresponding
control u∗(t) consist of
many similar, slowly
changing cycles.

Picture from freePik.com

Solver

▶ similar cycles might be
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Regularization

Researcher

▶ reward similarity in
micro-integrations
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Experiments (Continued)
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What about the full trajectory?
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▶ ’Reconstruct’ the reel-out phase by
interpolating the micro-integrations

▶ Not a physical trajectory, only an
approximation.

▶ ’Validate’ the trajectory using a tracking
MPC (very expensive)
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Validation with Tracking MPC
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Experiments (Continued)
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Conclusion

▶ A method to efficiently optimize dual kite trajectories with a large number of subcycles.

▶ Based on the assumption that the subcycles are only changing slowly

▶ “Simulate only 4 cycles instead of 50”

▶ We can ’reconstruct’ the full trajectory and validate it using a tracking MPC

▶ Induction Model

▶ Number of cycles as optimization variable

▶ ...
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▶ We can ’reconstruct’ the full trajectory and validate it using a tracking MPC
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Thank you for your attention!
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▶ Approximate the ’average dynamics’ with DAE:

Ẋ = F (X,Z) (1a)

0 = G(X,Z, T ) (1b)

▶ G: equations to simulate the cycle

▶ Algebraic cycle variables Z :

▶ Startpoint x−, Endpoint x+

▶ Shooting nodes of the micro-integration
▶ Variable Duration T that scales the dynamics

▶ Regularization to keep the start and endpoint
’close’ to each other

Jreg = · · ·+ ∥x+ − x−∥2W + . . . (2)
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Numerical Method for Efficient Simulation [1]
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Solution x(τ)

▶ At some point (τ∗, X∗):

(a) perform one or more micro-integrations
to evaluate the one-cycle map

(b) approximate the averaged dynamics

▶ Macro-integrate the averaged dynamics

▶ Integration horizon of integer size N
cycles since

x(N) = X(N)

▶ Three sources of error:

(a) errors in the micro-integration
(b) errors in the approximation of the

dynamics
(c) errors in the macro-integration
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