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» Optimize a single pumping cycle of a dual-kite
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» Formulate OCP — discretize to NLP
min F(w)
st. 0=G(w),
0 < H(w)

» Very large, complicated nonlinear problem,
need good strategy and initialization to solve

> Software Packages such as the AWEBox|[2]
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» Dual Kite Setup, two AP2 planes
» High-Fidelity 6-DOF model for each plane
> System Dynamics (Index-1 DEA)

f(x7u7z7t) :0

with z € R?!, w € R1?, z € R?, based on
Lagrangian dynamics

» x: 21 states per kite + 6 states connection
point + 3 auxillary

b

Optimization of Long Trajectories of Dual-Wing AWE Systems

J. Harzer, J. De Schutter, P. Rutquist and M. Diehl



Experiments

Power
50
45 4
40 4
2
I=h
5 35 4
g
[
304
25 4
20 T T T
0 5

"
15 20 25
Number of Subeycles

ng Trajectories of Dual-Wing AWE Systems

J. De Schutter, P. Rutquist and M. Diehl



Experiments

Power
50
—@— Full NLP
45 4
40 4
°
2
I=h
5 35 4
g
[
304
25 4
20 T T T T
0 5 15 20 25

Number of Subeycles

ng Trajectories of Dual-Wing AWE Systems

J. De Schutter, P. Rutquist and M. Diehl



Experiments

Power
50
—@— Full NLP
45 4
40 4 f
2
I=h
5 35 4
g
[
304
25 4
20 T T T T
0 5 15 20 25

Number of Subeycles

ng Trajectories of Dual-Wing AWE Systems

J. De Schutter, P. Rutquist and M. Diehl



Experiments

Power
50
—@— Full NLP
45 4
40 4 /
2
I=h
5 35 4
g
[
304
25 4
20 T T T T
0 5 15 20 25

Number of Subeycles

ng Trajectories of Dual-Wing AWE Systems

J. De Schutter, P. Rutquist and M. Diehl



Experiments

Power

Number of Variables
50 100000
@ Full NLP ® Full NLP
45 4
80000 4
40 4
60000 4
=3
24
5 35 4
g
=
40000 4
304
°
20000 4 °
254 L ]
20 T T T T 0 T T T T
0 5 10 15 20 25 0 5 10 15 20 25

Number of Subeycles Number of Subcycles

g Trajectories of Dual-Wing AWE Systems J. Harzer, J. De Schutter, P. Rutq and M. Diehl



Experiments

Power Number of Variables
50 100000 —
—@— Full NLP @® Full NLP
45 4
80000 4
40 4
60000 4
2
I=h
5 35 4
g
[
40000
304
20000 -
25 1
20 T T T T 0 T T T
0 5 10 15 20 25 0 10 20 25

g Trajectories of Du:

Number of Subeycles

g AWE Systems

J. Harzer, J. De Schutter, P. Rutquist and M

Number of Subcycles




Some Observations

zinm

500 50

oinm

N=2

J. Harzer, J. De Schutter, P. Rutquist and M




Some Observations

w00
™
-
w50
w0 5
0
-
"
™
®
</ Wing </ Wind o

150 800 0
oo 50

700 550 B
Tinm

500 50

oinm

N=2 N =4

De Schutter, P. Rutq

g Trajectories of Dual-Wing AWE Systems



Some Observations

Optimization of Long Trajectories of Dual-Wing AWE Systems J. Harzer, J. De Schutter, P. Rutquist and M. Diehl



Some Observations

300 A
g
= 250
N
B
200
— p:(t)
150 T T T T T T
0 10 20 30 40 50
tins
20 4
@
=
R
=
B
—20
vz (t)
—401 T T T T T
0 10 20 30 40 50
tins

N =5

ng Trajectories of Dual-Wing AWE Systems

J. De Schutter, P. Rutquist and M. Diehl



Some Observations

» In the reel-out phase, the
B subcycles look similar
=
= 250
:
200 A
e Pz(t)
150 T T T T T T
0 10 20 30 40 50
tins
20 A
<
R
E
0+
— vg(t)
—40 1 T T T T T T
0 10 20 30 40 50
tins

N =5

on of Long Trajectories of Dual-Wing AWE Systems J. Harzer, J. De Schutter, P. Rutquist and M. Diehl



Some Observations

» In the reel-out phase, the
T subcycles look similar
=
& 250 » There is some 'slow' or 'average'
Bl .
200 mode of the trajectory
e Pz(t)
150 T T T T T T
0 10 20 30 40 50
tins
20 A
E
0+
— vg(t)
—40 1 T T T T T T
0 10 20 30 40 50
tins

N =5

zation of Long Trajectories of Dual-Wing AWE Systems J. Harzer, J. De Schutter, P. Rutquist and M. Diehl



Some Observations

» In the reel-out phase, the
subcycles look similar

300 A

250 A

p- inm

» There is some 'slow' or 'average'
200 mode of the trajectory

— p:(t)

150

o
1)
o
S
@
8
IS
S
o
3

tins Strong Assumption

204 In the reel-out phase, the power
optimal trajectory z*(¢) and the
corresponding control u*(t) consist of
201 many similar, slowly changing cycles.

— v(t)

v, in m/s
s
s

—40 4

tins

N =5

Optimization of Long Trajectories of Dual-Wing AWE Systems J. Harzer, J. De Schutter, P. Rutquist and M. Diehl



Stroboscopic Averaging Method

—— Oscillatory Solution z(7)
®  Stroboscopic Points
Averaged Solution X (1)
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Stroboscopic Averaging Method

Oscillatory Solution z(7)
Averaged Solution X (1)
T~ = Micro-Integration
Sl - —§ = Macro-Integration
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—— Average
Reelin: System Dynamics
—— Micro-Integrations

> Reel-out phase: Simulate the
approximated average dynamics using
stroboscopic averaging
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Regularization

In the reel-out phase, the
power optimal trajectory
x*(t) and the corresponding
control u*(t) consist of
many similar, slowly
changing cycles.

Picture from freePik.com

J. Harzer, J. De Schutter, P. Rutquist and M. Diehl

Optimization of Long Trajectories of Dual-Wing AWE Systems



Regularization

In the reel-out phase, the
power optimal trajectory
x*(t) and the corresponding
control u*(t) consist of
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Regularization

Researcher

In the reel-out phase, the
power optimal trajectory
x*(t) and the corresponding
control u*(t) consist of
many similar, slowly
changing cycles.

» similar cycles might be

» reward similarity in )
suboptimal

micro-integrations

Picture from freePik.com
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Reconstruct’ the reel-out phase by
interpolating the micro-integrations

approximation.
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approximation.
MPC (very expensive)

» 'Validate' the trajectory using a tracking

» Not a physical trajectory, only an
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Validation with Tracking MPC
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Conclusion

> A method to efficiently optimize dual kite trajectories with a large number of subcycles.
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Conclusion

> A method to efficiently optimize dual kite trajectories with a large number of subcycles.
» Based on the assumption that the subcycles are only changing slowly
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Thank you for your attention!
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Useful Sources

@ Mari Paz Calvo, Philippe Chartier, Ander Murua, and Jesiis Maria Sanz-Serna.
A stroboscopic numerical method for highly oscillatory problems.
In Bjorn Engquist, Olof Runborg, and Yen-Hsi R. Tsai, editors, Numerical Analysis of
Multiscale Computations, pages 71-85, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

@ Jochem De Schutter, Rachel Leuthold, Thilo Bronnenmeyer, Elena Malz, Sebastien Gros,
and Moritz Diehl.
Awebox: An optimal control framework for single- and multi-aircraft airborne wind energy

systems.
Energies, 16(4), 2023.
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Micro-Integration
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Micro-Integration
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Micro-Integration
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Micro-Integration
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Micro-Integration

Position > Approximate the 'average dynamics’ with DAE:
30 —o— SAM_Average .
250 4 —— SAM_Micro X = F1(AX7 Z) (la)
: 0=G(X,Z,T) (1b)
0 > (: equations to simulate the cycle
E 201 » Algebraic cycle variables Z :
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150 > Shooting nodes of the micro-integration
> Variable Duration T' that scales the dynamics
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Micro-Integration

Position > Approximate the 'average dynamics’ with DAE:
0 —o— SAM_Average .
250 4 —— SAM_Micro X = F1(AX7 Z) (la)
260 - — - 0 = G(X, Z,T) (1b)

0 > (: equations to simulate the cycle
220 4

» Algebraic cycle variables Z :

200 > Startpoint =, Endpoint 2™

150 > Shooting nodes of the micro-integration

> Variable Duration T' that scales the dynamics
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» Regularization to keep the start and endpoint
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Numerical Method for Efficient Simulation [1]

[ ) Solution z(7)
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Numerical Method for Efficient Simulation [1]

e Solution () > At some point (7%, X*):
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Numerical Method for Efficient Simulation [1]

0.5

& 0.09
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Solution z(7)

— Micro-Integration

on of Long Trajectories of Dual-Wing AWE Systems

> At some point (7, X*):
(a) perform one or more micro-integrations
to evaluate the one-cycle map
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0.5

& 0.09

—0.5 1

—1.0 A

Solution z(7)

— Micro-Integration

on of Long Trajectories of Dual-Wing AWE Systems

> At some point (7%, X*):
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