Efficient Numerical Optimal Control for Highly Oscillatory Systems

Jakob Harzer, Jochem De Schutter, Moritz Diehl

CDC 2022 Presentation December 6th, 2022

Introduction

Introduction

Introduction

Can we make use of the fact that the expected trajectory of an OCP is highly oscillatory to speed up the optimization process?

The Envelope

Highly oscillatory initial value problem

$$\dot{x}(t) = f(x(t))$$
$$x(0) = x_0$$

with solution $x(t) \in \mathbb{R}^{n_x}, t \in [0, t_{\mathrm{f}}]$ and known period duration T.

Efficient Numerical Optimal Control for Highly Oscillatory Systems Jakob Harzer, Jochem De Schutter, Moritz Diehl

Highly oscillatory initial value problem

$$\begin{aligned} \dot{x}(t) &= f(x(t)) \\ x(0) &= x_0 \end{aligned}$$

a (,))

.

with solution $x(t) \in \mathbb{R}^{n_x}, t \in [0, t_{\mathrm{f}}]$ and known period duration T.

The Envelope

Efficient Numerical Optimal Control for Highly Oscillatory Systems Jakob Harzer, Jochem De Schutter, Moritz Diehl

Highly oscillatory initial value problem

The Envelope

$$\begin{aligned} x(t) &= f(x(t)) \\ x(0) &= x_0 \end{aligned}$$

 $\dot{\pi}(t) = f(\pi(t))$

with solution $x(t) \in \mathbb{R}^{n_x}, t \in [0, t_{\mathrm{f}}]$ and known period duration T.

Efficient Numerical Optimal Control for Highly Oscillatory Systems

Jakob Harzer, Jochem De Schutter, Moritz Diehl

$$\dot{x}(t) = f(x(t))$$
$$x(0) = x_0$$

The Envelope

duration T_{-}

Efficient Numerical Optimal Control for Highly Oscillatory Systems

Jakob Harzer, Jochem De Schutter, Moritz Diehl

Assumption: Envelope x_e stems from envelope dynamics

Envelope Dynamics

$\frac{\mathrm{d}x_{\mathrm{e}}}{\mathrm{d}t}(t) = f_{\mathrm{e}}(x_{\mathrm{e}}(t))$

Efficient Numerical Optimal Control for Highly Oscillatory Systems

Jakob Harzer, Jochem De Schutter, Moritz Diehl

\blacktriangleright Assumption: Envelope $x_{\rm e}$ stems from envelope dynamics

Envelope Dynamics

$$\frac{\mathrm{d}x_{\mathrm{e}}}{\mathrm{d}\tau}(\tau) = f_{\mathrm{e}}(x_{\mathrm{e}}(\tau))$$

Efficient Numerical Optimal Control for Highly Oscillatory Systems Jakob Harzer, Jochem De Schutter, Moritz Diehl

Envelope Dynamics

 \blacktriangleright Assumption: Envelope $x_{\rm e}$ stems from envelope dynamics

$$\frac{\mathrm{d}x_{\mathrm{e}}}{\mathrm{d}\tau}(\tau) = f_{\mathrm{e}}(x_{\mathrm{e}}(\tau))$$

Basic Idea:

Envelope Dynamics

 \blacktriangleright Assumption: Envelope $x_{\rm e}$ stems from envelope dynamics

$$\frac{\mathrm{d}x_{\mathrm{e}}}{\mathrm{d}\tau}(\tau) = f_{\mathrm{e}}(x_{\mathrm{e}}(\tau))$$

- Basic Idea:
 - 1. Micro-integrate one period of the oscillations

Envelope Dynamics

 \blacktriangleright Assumption: Envelope $x_{\rm e}$ stems from envelope dynamics

$$\frac{\mathrm{d}x_{\mathrm{e}}}{\mathrm{d}\tau}(\tau) = f_{\mathrm{e}}(x_{\mathrm{e}}(\tau))$$

Basic Idea:

- 1. Micro-integrate one period of the oscillations
- 2. Approximate the envelope dynamics using a DAE

$$\frac{\mathrm{d}x_{\mathrm{e}}}{\mathrm{d}\tau}(\tau) = f_{\mathrm{e}}(x_{\mathrm{e}}(\tau), z_{\mathrm{e}}(\tau))$$
$$0 = g_{\mathrm{e}}(x_{\mathrm{e}}(\tau), z_{\mathrm{e}}(\tau))$$

Basic Idea: 1. Micro-integrate one period of the oscillations

Envelope Dynamics

2. Approximate the envelope dynamics using a DAE

Assumption: Envelope x_e stems from envelope dynamics

 $\frac{\mathrm{d}x_{\mathrm{e}}}{\mathrm{d}\tau}(\tau) = f_{\mathrm{e}}(x_{\mathrm{e}}(\tau))$

$$\frac{\mathrm{d}x_{\mathrm{e}}}{\mathrm{d}\tau}(\tau) = f_{\mathrm{e}}(x_{\mathrm{e}}(\tau), z_{\mathrm{e}}(\tau))$$
$$0 = g_{\mathrm{e}}(x_{\mathrm{e}}(\tau), z_{\mathrm{e}}(\tau))$$

3. Macro-integrate the approximated slow envelope dynamics instead of the fast oscillating dynamics!

- "Basic underlying idea has appeared several times in the literature over the last fifty years" [3]
- Multirevolution Methods by Mace and Thomas[5], Graf[4]
- Envelope Following Methods by Petzold[6]
- Stroboscopic Averaging Methods by Calvo[2]
- ► Heterogeneous Multiscale Methods, Averaging Methods etc.

- "Basic underlying idea has appeared several times in the literature over the last fifty years" [3]
- Multirevolution Methods by Mace and Thomas[5], Graf[4]
- Envelope Following Methods by Petzold[6]
- Stroboscopic Averaging Methods by Calvo[2]
- ► Heterogeneous Multiscale Methods, Averaging Methods etc.

New: Fully implicit DAE formulation, Use for Optimal Control Problems

Toy Example

Toy Example

Perturbed Predator-Prey Model with rabbits r and snow leopards s:

$$x = \begin{bmatrix} r \\ s \end{bmatrix} \in \mathbb{R}^2$$

$$\dot{x} = \begin{bmatrix} \alpha r - \beta rs \\ \delta rs - \gamma s \end{bmatrix} + \begin{bmatrix} 0 \\ u \end{bmatrix}$$

Toy Example

Perturbed Predator-Prey Model with rabbits r and snow leopards s:

$$x = \begin{bmatrix} r \\ s \end{bmatrix} \in \mathbb{R}^2$$

$$\dot{x} = \begin{bmatrix} \alpha r - \beta rs \\ \delta rs - \gamma s \end{bmatrix} + \begin{bmatrix} 0 \\ u \end{bmatrix}$$

Affine phase conditions

$$q^{\top}x^{-} = b^{-}$$
 (1a)
 $q^{\top}x^{+} = b^{+}$ (1b)

Affine phase conditions

$$q^{\top}x^{-} = b^{-}$$
 (1a)
 $q^{\top}x^{+} = b^{+}$ (1b)

Affine phase conditions

$$q^{\top}x^{-} = b^{-}$$
 (1a)
 $q^{\top}x^{+} = b^{+}$ (1b)

- Easiest case:
 - $\blacktriangleright b^- = b^+$
 - Similar to a Poincaré section

Affine phase conditions

$$q^{\top}x^{-} = b^{-}$$
 (1a)
 $q^{\top}x^{+} = b^{+}$ (1b)

- Easiest case:
 - $\blacktriangleright \ b^- = b^+$
 - Similar to a Poincaré section
- \blacktriangleright [Q|q] is an orthonormal basis of the statespace

▶ Discrete start and end point of a cycle x_k^-, x_k^+

- ▶ Discrete start and end point of a cycle x_k^-, x_k^+
- Integration of the dynamics over one cycle

$$x_k^+ = F(x_k^-, U_k, T_k)$$

- ▶ Discrete start and end point of a cycle x_k^-, x_k^+
- Integration of the dynamics over one cycle

$$x_k^+ = F(x_k^-, U_k, T_k)$$

Cycle Conditions

$$C(z_k, U_k) \coloneqq \begin{cases} 0 &= q^\top x_k^- - b^- \\ 0 &= x_k^+ - F(x_k^-, U_k, T_k) \\ 0 &= q^\top x_k^+ - b^+ \end{cases}$$
(2)

that define one cycle.

- \blacktriangleright Discrete start and end point of a cycle x_k^-, x_k^+
- Integration of the dynamics over one cycle

$$x_k^+ = F(x_k^-, U_k, T_k)$$

Cycle Conditions

$$C(z_k, U_k) \coloneqq \begin{cases} 0 &= q^\top x_k^- - b^- \\ 0 &= x_k^+ - F(x_k^-, U_k, T_k) \\ 0 &= q^\top x_k^+ - b^+ \end{cases}$$
(2)

that define one cycle.

Algebraic cycle variables

$$z_k = (x_k^-, x_k^+, T_k)$$

N-Cycle OCP

$$\begin{split} \min_{\mathcal{W}} & \sum_{k=0}^{N-1} L_{\mathrm{c}}(z_k, U_k) + E(x_{N-1}^+) \\ \mathrm{s.t.} & 0 = Q^\top (x_0^- - x_0), \\ & 0 = C(z_k, U_k) \qquad k = 0, ..., N-1, \\ & 0 = Q^\top (x_k^- - x_{k-1}^+) \quad k = 1, ..., N-1 \end{split}$$

Central Difference Envelope-DAE

$$\begin{split} \frac{\mathrm{d}x}{\mathrm{d}\tau} &= x^+ - x^- & \text{(slope approx.)} \\ 0 &= Q^\top \left(\frac{x^+ + x^-}{2} - x \right) & \text{(connecting cond.)} \\ 0 &= C(z, U) & \text{(cycle cond.).} \end{split}$$

Central Difference Envelope-DAE

$$\begin{split} \frac{\mathrm{d}x}{\mathrm{d}\tau} &= x^+ - x^- & \text{(slope approx.)} \\ 0 &= Q^\top \left(\frac{x^+ + x^-}{2} - x \right) & \text{(connecting cond.)} \\ 0 &= C(z,U) & \text{(cycle cond.).} \end{split}$$

▶ summarize by
$$f_e(x, z) := x^+ - x^-$$
 and $0 = g_e(x, z)$ with $x = x$ and $z = (x^+, x^-, T)$

Central Difference Envelope-DAE

$$\begin{split} \frac{\mathrm{d}x}{\mathrm{d}\tau} &= x^+ - x^- & \text{(slope approx.)} \\ 0 &= Q^\top \left(\frac{x^+ + x^-}{2} - x \right) & \text{(connecting cond.)} \\ 0 &= C(z, U) & \text{(cycle cond.).} \end{split}$$

▶ Macro-Integration of the Envelope-DAE over $\tau \in [0, N]$

$$\frac{\mathrm{d}x}{\mathrm{d}\tau}(\tau) = f_{\mathrm{e}}(x(\tau), z(\tau))$$
$$0 = g_{\mathrm{e}}(x(\tau), z(\tau))$$

Example Integration: Predator-Prey IVP

Example Integration: Predator-Prey IVP

Example Integration: Predator-Prey IVP

Control matrix

$$U(\tau) = [u_0(\tau), u_1(\tau), \dots, u_{N_{\rm ctr}-1}(\tau)] \in \mathbb{R}^{n_u \times N_{\rm ctr}}$$

Control matrix

$$U(\tau) = [u_0(\tau), u_1(\tau), \dots, u_{N_{\rm ctr}-1}(\tau)] \in \mathbb{R}^{n_u \times N_{\rm ctr}}$$

 U(τ_i) parametrizes the control trajectory u(τ) of the cycle starting at τ_i.

Control matrix

$$U(\tau) = [u_0(\tau), u_1(\tau), \dots, u_{N_{\rm ctr}-1}(\tau)] \in \mathbb{R}^{n_u \times N_{\rm ctr}}$$

 U(τ_i) parametrizes the control trajectory u(τ) of the cycle starting at τ_i.

Control matrix

$$U(\tau) = [u_0(\tau), u_1(\tau), \dots, u_{N_{\rm ctr}-1}(\tau)] \in \mathbb{R}^{n_u \times N_{\rm ctr}}$$

- U(τ_i) parametrizes the control trajectory u(τ) of the cycle starting at τ_i.
- Simplest case: constant periodic control

$$U(\tau) = U_{\text{const}}$$

Control matrix

$$U(\tau) = [u_0(\tau), u_1(\tau), \dots, u_{N_{\rm ctr}-1}(\tau)] \in \mathbb{R}^{n_u \times N_{\rm ctr}}$$

- U(τ_i) parametrizes the control trajectory u(τ) of the cycle starting at τ_i.
- Simplest case: constant periodic control

$$U(\tau) = U_{\rm const}$$

Control matrix

$$U(\tau) = [u_0(\tau), u_1(\tau), \dots, u_{N_{\rm ctr}-1}(\tau)] \in \mathbb{R}^{n_u \times N_{\rm ctr}}$$

- U(τ_i) parametrizes the control trajectory u(τ) of the cycle starting at τ_i.
- Simplest case: constant periodic control

$$U(\tau) = U_{\text{const}}$$

► DAE:

$$\dot{x} = f_{e}(x(\tau), z(\tau), U(\tau))$$
$$0 = g_{e}(x(\tau), z(\tau), U(\tau))$$

$$\begin{split} \min_{\substack{x_{e}(\cdot), \, z_{e}(\cdot), \, U(\cdot) \\ \text{s.t.}}} & \|x_{e}(N) - \bar{x}_{N}\|_{Q}^{2} \\ \text{s.t.} & 0 = x_{e}(0) - \bar{x}_{0}, \\ & \dot{x}_{e} = f_{e}(x_{e}(\tau), z_{e}(\tau), U(\tau)), \quad \tau \in [0, N], \\ & 0 = g_{e}(x_{e}(\tau), z_{e}(\tau), U(\tau)), \quad \tau \in [0, N], \\ & 0 \leq h(x_{e}(\tau), z_{e}(\tau), U(\tau)), \quad \tau \in [0, N] \end{split}$$

Efficient Numerical Optimal Control for Highly Oscillatory Systems Jakob Harzer, Jochem De Schutter, Moritz Diehl

$$\begin{aligned} \min_{x_{e}(\cdot), z_{e}(\cdot), U(\cdot)} & \|x_{e}(N) - \bar{x}_{N}\|_{Q}^{2} \\ \text{s.t.} & 0 = x_{e}(0) - \bar{x}_{0}, \\ & \dot{x}_{e} = f_{e}(x_{e}(\tau), z_{e}(\tau), U(\tau)), & \tau \in [0, N], \\ & 0 = g_{e}(x_{e}(\tau), z_{e}(\tau), U(\tau)), & \tau \in [0, N], \\ & 0 \le h(x_{e}(\tau), z_{e}(\tau), U(\tau)), & \tau \in [0, N] \end{aligned}$$

• Drive populations to target state $\bar{x}_N = [1, 0.7]^{\top}$.

$$\begin{split} \min_{\substack{x_{e}(\cdot), z_{e}(\cdot), U(\cdot) \\ \text{s.t.}}} & \|x_{e}(N) - \bar{x}_{N}\|_{Q}^{2} \\ \text{s.t.} & 0 = x_{e}(0) - \bar{x}_{0}, \\ & \dot{x}_{e} = f_{e}(x_{e}(\tau), z_{e}(\tau), U(\tau)), \quad \tau \in [0, N], \\ & 0 = g_{e}(x_{e}(\tau), z_{e}(\tau), U(\tau)), \quad \tau \in [0, N], \\ & 0 \leq h(x_{e}(\tau), z_{e}(\tau), U(\tau)), \quad \tau \in [0, N], \end{split}$$

- Drive populations to target state $\bar{x}_N = [1, 0.7]^{\top}$.
- Discretize with 3 stage Gauss-Legendre collocation scheme over N = 20 periods.

$$\begin{split} \min_{\substack{x_{e}(\cdot), z_{e}(\cdot), U(\cdot) \\ \text{s.t.}}} & \|x_{e}(N) - \bar{x}_{N}\|_{Q}^{2} \\ \text{s.t.} & 0 = x_{e}(0) - \bar{x}_{0}, \\ & \dot{x}_{e} = f_{e}(x_{e}(\tau), z_{e}(\tau), U(\tau)), \quad \tau \in [0, N] \\ & 0 = g_{e}(x_{e}(\tau), z_{e}(\tau), U(\tau)), \quad \tau \in [0, N] \\ & 0 \leq h(x_{e}(\tau), z_{e}(\tau), U(\tau)), \quad \tau \in [0, N] \end{split}$$

- Drive populations to target state $\bar{x}_N = [1, 0.7]^{\top}$.
- Discretize with 3 stage Gauss-Legendre collocation scheme over N = 20 periods.
- The target state cannot be reached!

$$\min_{\substack{x_{e}(\cdot), z_{e}(\cdot), U(\cdot) \\ \text{s.t.}}} \|x_{e}(N) - \bar{x}_{N}\|_{Q}^{2}$$

$$\text{s.t.} \qquad 0 = x_{e}(0) - \bar{x}_{0},$$

$$\dot{x}_{e} = f_{e}(x_{e}(\tau), z_{e}(\tau),$$

$$0 = a_{0}(x_{o}(\tau), z_{o}(\tau),$$

$$\begin{split} & x_{e}(0) - \bar{x}_{0}, \\ & f_{e}(x_{e}(\tau), z_{e}(\tau), U(\tau)), \qquad \tau \in [0, \\ & g_{e}(x_{e}(\tau), z_{e}(\tau), U(\tau)), \qquad \tau \in [0, \\ & h(x_{e}(\tau), z_{e}(\tau), U(\tau)), \qquad \tau \in [0, \\ \end{split}$$

5

10

15

20

- Drive populations to target state $\bar{x}_N = [1, 0.7]^{\top}$.
- Discretize with 3 stage Gauss-Legendre collocation scheme over N = 20 periods.
- The target state cannot be reached!

 $0 \leq$

N

0.5

0.0 Ó

$$\begin{array}{ll} \min_{ x_{\mathrm{e}}(\cdot), \, z_{\mathrm{e}}(\cdot), \, U(\cdot) } & \|x_{\mathrm{e}}(N) - \bar{x}_{N}\|_{Q}^{2} \\ \mathrm{s.t.} & 0 = x_{\mathrm{e}}(0) - \bar{x}_{0}, \\ & \dot{x}_{\mathrm{e}} = f_{\mathrm{e}}(x_{\mathrm{e}}(\tau), z_{\mathrm{e}}(\tau) \\ & 0 = g_{\mathrm{e}}(x_{\mathrm{e}}(\tau), z_{\mathrm{e}}(\tau) \end{array}$$

$$\begin{aligned} &-\bar{x}_{0}, \\ &(\tau), z_{e}(\tau), U(\tau)), & \tau \in [0, N], \\ &(\tau), z_{e}(\tau), U(\tau)), & \tau \in [0, N], \\ &\tau), z_{e}(\tau), U(\tau)), & \tau \in [0, N] \end{aligned}$$

 $0 \leq h(x_{\rm e})$

- Discretize with 3 stage Gauss-Legendre collocation scheme over N = 20 periods.
- The target state cannot be reached!

Large approximation and integration error if the envelope is not smooth enough

- Large approximation and integration error if the envelope is not smooth enough
- 'Wrong' trajectories might be more 'optimal'

- Large approximation and integration error if the envelope is not smooth enough
- 'Wrong' trajectories might be more 'optimal'
- Make sure that we maintain highly oscillatory trajectories with slowly changing envelope

- Large approximation and integration error if the envelope is not smooth enough
- 'Wrong' trajectories might be more 'optimal'
- Make sure that we maintain highly oscillatory trajectories with slowly changing envelope
- Ex: Regularization on 2nd envelope derivative

$$J = \|x_{\text{end}} - \bar{x}_{\text{end}}\|_Q^2 + \alpha \sum_{i=1}^d b_i w_i^2$$

where $w_i = \ddot{x}_e(\tau_i)$

5

10

15

20

- Large approximation and integration error if the envelope is not smooth enough
- 'Wrong' trajectories might be more 'optimal'
- Make sure that we maintain highly oscillatory trajectories with slowly changing envelope
- Ex: Regularization on 2nd envelope derivative

$$J = \|x_{\text{end}} - \bar{x}_{\text{end}}\|_Q^2 + \alpha \sum_{i=1}^d b_i w_i^2$$

where $w_i = \ddot{x}_e(\tau_i)$

Graphics from Vecteezy.com

Move satellite from circular park orbit at 500 km to mission orbit at 1400 km, problem of [1].

Graphics from Vecteezy.com

- Move satellite from circular park orbit at 500 km to mission orbit at 1400 km, problem of [1].
- Pertubations from earth oblatness are much stronger than thrust, they induce oscillations in the orbit parameters

Graphics from Vecteezy.com

- Move satellite from circular park orbit at 500 km to mission orbit at 1400 km, problem of [1].
- Pertubations from earth oblatness are much stronger than thrust, they induce oscillations in the orbit parameters

- Move satellite from circular park orbit at 500 km to mission orbit at 1400 km, problem of [1].
- Pertubations from earth oblatness are much stronger than thrust, they induce oscillations in the orbit parameters
- ▶ We require a large number of controlled orbits to reach the target orbit y
 = [a, e, i, ω]

- Move satellite from circular park orbit at 500 km to mission orbit at 1400 km, problem of [1].
- Pertubations from earth oblatness are much stronger than thrust, they induce oscillations in the orbit parameters
- ▶ We require a large number of controlled orbits to reach the target orbit y
 = [a, e, i, ω]
- ▶ Here: Two stages with N = 289 orbits, we search for an optimal periodic control scheme with $N_{\rm ctrl} = 30$ controls for each orbit in both stages

State: Modified Equinoctial Elements

 $\boldsymbol{x} = [p, f, g, h, k, L, m, t]^\top \in \mathbb{R}^8$

- State: Modified Equinoctial Elements
 - $x = [p, f, g, h, k, L, m, t]^\top \in \mathbb{R}^8$
- ▶ Controls: Thrust Vector $u \in \mathbb{R}^3$

- State: Modified Equinoctial Elements
 - $x = [p, f, g, h, k, L, m, t]^\top \in \mathbb{R}^8$
- ▶ Controls: Thrust Vector $u \in \mathbb{R}^3$
- Phase Conditions:

 $L^{-} + L_{0} = 0$ $L^{+} + L_{0} - 2\pi = 0$

State: Modified Equinoctial Elements

$$\boldsymbol{x} = [\boldsymbol{p}, \boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}, \boldsymbol{k}, \boldsymbol{L}, \boldsymbol{m}, \boldsymbol{t}]^\top \in \mathbb{R}^8$$

- ▶ Controls: Thrust Vector $u \in \mathbb{R}^3$
- Phase Conditions:

 $L^{-} + L_{0} = 0$ $L^{+} + L_{0} - 2\pi = 0$

Constant periodic control for each stage

$$U_i = [u_0, u_1, \dots, u_{29}] \in \mathbb{R}^{3 \times 30}, i = 1, 2$$

State: Modified Equinoctial Elements

$$x = [p, f, g, h, k, L, m, t]^\top \in \mathbb{R}^8$$

- ▶ Controls: Thrust Vector $u \in \mathbb{R}^3$
- Phase Conditions:
 - $L^{-} + L_{0} = 0$ $L^{+} + L_{0} - 2\pi = 0$
- Constant periodic control for each stage

$$U_i = [u_0, u_1, \dots, u_{29}] \in \mathbb{R}^{3 \times 30}, i = 1, 2$$

$$\begin{array}{ll} \min_{\substack{x_e(\cdot), z_e(\cdot), \\ U_1, U_2}} & m(2N) \\ \text{s.t.} & 0 = x(0) - \bar{x}_0, \\ & \dot{x} = f_e(x_e, z_e, U_1), & \tau \in [0, N], \\ & 0 = g_e(x_e, z_e, U_1), & \tau \in [0, N], \\ & 0 \le h(x, z, U_1), & \tau \in [0, N], \\ & \dot{x} = f_e(x_e, z_e, U_2), & \tau \in [N, 2N], \\ & 0 \le h(x_e, z_e, U_2), & \tau \in [N, 2N], \\ & 0 \le h(x_e, z_e, U_2), & \tau \in [N, 2N], \\ & 0 \le h(x_e, z_e, U_2), & \tau \in [N, 2N], \\ & x_{\text{end}} \le x_e(2N) \le \overline{x_{\text{end}}} \end{array}$$

Example: Low Thrust Satellite - Solution

Example: Low Thrust Satellite - Solution

 Effectively simulate only 10 out of 578 orbits

- Effectively simulate only 10 out of 578 orbits
- ▶ NLP size reduced from ≈ 555000 to 17344 variables

- Effectively simulate only 10 out of 578 orbits
- ▶ NLP size reduced from ≈ 555000 to 17344 variables
- Maximum relative error: $1.1 \cdot 10^{-4}$ in state g

- Effectively simulate only 10 out of 578 orbits
- ▶ NLP size reduced from ≈ 555000 to 17344 variables
- Maximum relative error: $1.1 \cdot 10^{-4}$ in state g
- Optimal final mass m = 155.48 kg almost coincides with result of [1]

A THE PARTY OF THE

Summary

Integration method for highly oscillatory systems:

- Integration method for highly oscillatory systems:
 - $1. \ \mbox{Micro-integrate}$ the system dynamics over one period

- Integration method for highly oscillatory systems:
 - 1. Micro-integrate the system dynamics over one period
 - 2. Construct a DAE that approximates the envelope of the highly oscillatory state trajectories

- Integration method for highly oscillatory systems:
 - 1. Micro-integrate the system dynamics over one period
 - 2. Construct a DAE that approximates the envelope of the highly oscillatory state trajectories
 - 3. Macro-integrate the DAE over a large number of periods \boldsymbol{N}

- Integration method for highly oscillatory systems:
 - 1. Micro-integrate the system dynamics over one period
 - 2. Construct a DAE that approximates the envelope of the highly oscillatory state trajectories
 - 3. Macro-integrate the DAE over a large number of periods \boldsymbol{N}
- Parametrize the controls for one period with $U(\tau)$.

- Integration method for highly oscillatory systems:
 - 1. Micro-integrate the system dynamics over one period
 - 2. Construct a DAE that approximates the envelope of the highly oscillatory state trajectories
 - 3. Macro-integrate the DAE over a large number of periods ${\cal N}$
- Parametrize the controls for one period with $U(\tau)$.
- Possibility to reduce the problem size by magnitudes

Summary

- Integration method for highly oscillatory systems:
 - 1. Micro-integrate the system dynamics over one period
 - 2. Construct a DAE that approximates the envelope of the highly oscillatory state trajectories
 - 3. Macro-integrate the DAE over a large number of periods ${\cal N}$
- Parametrize the controls for one period with $U(\tau)$.
- Possibility to reduce the problem size by magnitudes
- Make sure that trajectories stay highly oscillatory

In the future

Summary

- Integration method for highly oscillatory systems:
 - 1. Micro-integrate the system dynamics over one period
 - 2. Construct a DAE that approximates the envelope of the highly oscillatory state trajectories
 - 3. Macro-integrate the DAE over a large number of periods ${\cal N}$
- Parametrize the controls for one period with $U(\tau)$.
- Possibility to reduce the problem size by magnitudes
- Make sure that trajectories stay highly oscillatory

In the future

Constraint satisfaction over the whole horizon

Summary

- Integration method for highly oscillatory systems:
 - 1. Micro-integrate the system dynamics over one period
 - 2. Construct a DAE that approximates the envelope of the highly oscillatory state trajectories
 - 3. Macro-integrate the DAE over a large number of periods ${\cal N}$
- Parametrize the controls for one period with $U(\tau)$.
- Possibility to reduce the problem size by magnitudes
- Make sure that trajectories stay highly oscillatory

In the future

- Constraint satisfaction over the whole horizon
- Variable number of cycles

Thank you for your attention!

Bibliography I

- John T. Betts. "Very low-thrust trajectory optimization using a direct SQP method". In: Journal of Computational and Applied Mathematics 120.1 (2000), pp. 27-40. ISSN: 0377-0427. DOI: https://doi.org/10.1016/S0377-0427(00)00301-0. URL: https://www.sciencedirect.com/science/article/pii/S0377042700003010.
- [2] M. P. Calvo et al. "Numerical stroboscopic averaging for ODEs and DAEs". In: Applied Numerical Mathematics 61 (Nov. 2010). DOI: 10.1016/j.apnum.2011.06.007.
- [3] M.P. Calvo. Numerical stroboscopic averaging for ODEs and DAEs. https://www.fields.utoronto.ca/programs/scientific/11-12/SciCADE2011/presentations/Calvo.pdf. [Online; accessed 1-November-2021]. 2011.
- Otis Graf. "Multirevolution methods for orbit integration". In: Proceedings of the Conference on the Numerical Solution of Ordinary Differential Equations. Ed. by Dale G. Bettis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1974, pp. 471–490. ISBN: 978-3-540-37911-9.

- [5] David Mace and L. H. Thomas. "An extrapolation formula for stepping the calculation of the orbit of an artificial satellite several revolutions time". In: *The Astronomical Journal* 65 (1960), p. 300.
- [6] Linda R. Petzold. "An Efficient Numerical Method for Highly Oscillatory Ordinary Differential Equations". In: SIAM Journal on Numerical Analysis 18.3 (1981), pp. 455–479. DOI: 10.1137/0718030. eprint: https://doi.org/10.1137/0718030. URL: https://doi.org/10.1137/0718030.

Example: Low Thrust Satellite - Solution

Example: Low Thrust Satellite - States 1

Efficient Numerical Optimal Control for Highly Oscillatory Systems

Example: Low Thrust Satellite - States 2

Efficient Numerical Optimal Control for Highly Oscillatory Systems

Regularization on Second State Derivative Solves the Problem

Left (red): too small regularization

Right (green): sufficiently high regularization

Note: "sweet spot" around $\alpha = 0.5 \cdot 10^{-3}$ where objective is unaffected by regularization

Macro-Integration of the DAE

 $0 - \overline{x} - \overline{x}$

- \blacktriangleright Integrate DAE from x_0 over N periods
- Single implicit *d*-stage Runge-Kutta step with butcher coefficients c, A, b:

$$0 = x_0 - x_0$$

$$0 = x_N - x_0 + N \sum_{j=1}^d b_j v_j$$

$$0 = x_i - x_0 + N \sum_{j=1}^d a_{i,j} v_j$$

$$i = 1, \dots, d$$

$$0 = v_i - f_e(x_i, z_i)$$

$$i = 1, \dots, d$$

$$0 = g_e(x_i, z_i)$$

$$i = 1, \dots, d$$

Butcher tableau:

c_1	$a_{1,1}$	$a_{1,2}$		$a_{1,d}$
c_2	$a_{2,1}$	$a_{2,2}$		$a_{2,d}$
÷	÷	÷	·	÷
c_d	$a_{d,1}$	$a_{d,2}$		$a_{d,d}$
	b_1	b_2		\overline{b}_d

 $\begin{array}{c|c} 0 & 0 \\ \hline 1 \end{array}$

Forward Euler. d = 1:

Example: Predator Prey OCP

$$\begin{split} \min_{W} & \|x_N - \bar{x}_N\|_Q^2 \\ \text{s.t.} & 0 = x_0 - \bar{x}_0, \\ & 0 = x_N - x_0 + N \sum_{j=1}^d b_j v_j, \\ & 0 = x_i - x_0 + N \sum_{j=1}^d a_{i,j} v_j \qquad i = 1, \dots, d, \\ & 0 = v_i - f_e(x_i, z_i, U_{\text{const}}) \qquad i = 1, \dots, d, \\ & 0 = g_e(x_i, z_i, U_{\text{const}}) \qquad i = 1, \dots, d, \\ & 0 \le h(w) \end{split}$$

•
$$w = (x_0, x_1, \dots, x_d, v_1, \dots, v_d, z_1, \dots, z_d, x_N, U_{\text{const}})$$

Example: Predator Prey OCP

$$\begin{split} \min_{w} & \|x_N - \bar{x}_N\|_Q^2 \\ \text{s.t.} & 0 = x_0 - \bar{x}_0, \\ & 0 = x_N - x_0 + N \sum_{j=1}^d b_j v_j, \\ & 0 = x_i - x_0 + N \sum_{j=1}^d a_{i,j} v_j \qquad i = 1, \dots, \\ & 0 = v_i - f_e(x_i, z_i, U_{\text{const}}) \qquad i = 1, \dots, \\ & 0 = g_e(x_i, z_i, U_{\text{const}}) \qquad i = 1, \dots, \\ & 0 \le h(w) \end{aligned}$$

▶ $U_{\text{const}}^* = [-2, \ 2, \ 2] \cdot 10^{-3}$

d,

d,

d.

Phase Issue

(3)

$$x(\tau) = \begin{bmatrix} x(\tau) \\ t(\tau) \end{bmatrix} = \begin{bmatrix} Ce^{-T\tau} - \frac{\sin(2\pi\tau)}{\omega^2 + 1} + \frac{\omega\cos(2\pi\tau)}{\omega^2 + 1} \\ T\tau \end{bmatrix}$$
(4)

Numerical Time

- ▶ Physical time: $t \in [0, t_{\rm f}] \rightarrow$ Numerical time: $\tau \in [0, N]$
- Scaling with period duration T:

$$\tau(t) = \frac{t}{T} \qquad \qquad t(\tau) = \tau T$$

• Trajectories now in numerical time as $x(\tau)$, dynamics read

$$\frac{\mathrm{d}x}{\mathrm{d}\tau}(\tau) = Tf(x(\tau))$$

- With numerical time, we can integrate over whole periods
- Physical time t can be included as a state

Numerical Time

- ▶ Physical time: $t \in [0, t_{\rm f}] \rightarrow$ Numerical time: $\tau \in [0, N]$
- Scaling with period duration T:

$$\tau(t) = \frac{t}{T} \qquad \qquad t(\tau) = \tau T$$

 \blacktriangleright Trajectories now in numerical time as $x(\tau),$ dynamics read

$$\frac{\mathrm{d}x}{\mathrm{d}\tau}(\tau) = Tf(x(\tau))$$

- With numerical time, we can integrate over whole periods
- Physical time t can be included as a state

