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Can we make use of the fact that the expected trajectory of an OCP is highly oscillatory to
speed up the optimization process?

Efficient Numerical Optimal Control for Highly Oscillatory Systems Jakob Harzer, Jochem De Schutter, Moritz Diehl 1



The Envelope

▶ Highly oscillatory initial value problem

ẋ(t) = f(x(t))

x(0) = x0

with solution x(t) ∈ Rnx , t ∈ [0, tf ] and known period
duration T .

▶ Construct envelope xe(t) ∈ Rnx that smoothly
interpolates a series of ’periodic’ points x1, x2, . . ..
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ẋ(t) = f(x(t))

x(0) = x0

with solution x(t) ∈ Rnx , t ∈ [0, tf ] and known period
duration T .

▶ Construct envelope xe(t) ∈ Rnx that smoothly
interpolates a series of ’periodic’ points x1, x2, . . ..

Efficient Numerical Optimal Control for Highly Oscillatory Systems Jakob Harzer, Jochem De Schutter, Moritz Diehl 2



The Envelope

▶ Highly oscillatory initial value problem
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Envelope Dynamics

▶ Assumption: Envelope xe stems from envelope dynamics

dxe

dt
(t) = fe(xe(t))

▶ Basic Idea:

1. Micro-integrate one period of the oscillations

2. Approximate the envelope dynamics using a DAE

dxe

dτ
(τ) = fe(xe(τ), ze(τ))

0 = ge(xe(τ), ze(τ))

3. Macro-integrate the approximated slow envelope
dynamics instead of the fast oscillating dynamics!
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Related Work

”Basic underlying idea has appeared several times in the literature over the last fifty years”[3]

▶ Multirevolution Methods by Mace and Thomas[5], Graf[4]

▶ Envelope Following Methods by Petzold[6]

▶ Stroboscopic Averaging Methods by Calvo[2]

▶ Heterogeneous Multiscale Methods, Averaging Methods etc.

New: Fully implicit DAE formulation, Use for Optimal Control Problems
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Toy Example

▶ Perturbed Predator-Prey Model with rabbits r
and snow leopards s:

x =

[
r
s

]
∈ R2

ẋ =

[
αr − βrs
δrs− γs

]
+

[
0
u

]
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Cycle Discretization

▶ Affine phase conditions

q⊤x− = b− (1a)

q⊤x+ = b+ (1b)

for the start point x− ∈ Rnx and end point
x+ ∈ Rnx of a cycle, respectively.

▶ Easiest case:
▶ b− = b+

▶ Similar to a Poincaré section

▶ [Q|q] is an orthonormal basis of the statespace
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Cycle Discretization II

▶ Discrete start and end point of a cycle x−
k , x

+
k

▶ Integration of the dynamics over one cycle

x+
k = F (x−

k , Uk, Tk)

▶ Cycle Conditions

C(zk, Uk) :=


0 = q⊤x−

k − b−

0 = x+
k − F (x−

k , Uk, Tk)

0 = q⊤x+
k − b+

∈ Rnx+2 (2)

that define one cycle.

▶ Algebraic cycle variables
zk = (x−

k , x
+
k , Tk)

Efficient Numerical Optimal Control for Highly Oscillatory Systems Jakob Harzer, Jochem De Schutter, Moritz Diehl 7



Cycle Discretization II

▶ Discrete start and end point of a cycle x−
k , x

+
k

▶ Integration of the dynamics over one cycle

x+
k = F (x−

k , Uk, Tk)

▶ Cycle Conditions

C(zk, Uk) :=


0 = q⊤x−

k − b−

0 = x+
k − F (x−

k , Uk, Tk)

0 = q⊤x+
k − b+

∈ Rnx+2 (2)

that define one cycle.

▶ Algebraic cycle variables
zk = (x−

k , x
+
k , Tk)

Efficient Numerical Optimal Control for Highly Oscillatory Systems Jakob Harzer, Jochem De Schutter, Moritz Diehl 7



Cycle Discretization II

▶ Discrete start and end point of a cycle x−
k , x

+
k

▶ Integration of the dynamics over one cycle

x+
k = F (x−

k , Uk, Tk)

▶ Cycle Conditions

C(zk, Uk) :=


0 = q⊤x−

k − b−

0 = x+
k − F (x−

k , Uk, Tk)

0 = q⊤x+
k − b+

∈ Rnx+2 (2)

that define one cycle.

▶ Algebraic cycle variables
zk = (x−

k , x
+
k , Tk)

Efficient Numerical Optimal Control for Highly Oscillatory Systems Jakob Harzer, Jochem De Schutter, Moritz Diehl 7



Cycle Discretization II

▶ Discrete start and end point of a cycle x−
k , x

+
k

▶ Integration of the dynamics over one cycle

x+
k = F (x−

k , Uk, Tk)

▶ Cycle Conditions

C(zk, Uk) :=


0 = q⊤x−

k − b−

0 = x+
k − F (x−

k , Uk, Tk)

0 = q⊤x+
k − b+

∈ Rnx+2 (2)

that define one cycle.

▶ Algebraic cycle variables
zk = (x−

k , x
+
k , Tk)

Efficient Numerical Optimal Control for Highly Oscillatory Systems Jakob Harzer, Jochem De Schutter, Moritz Diehl 7



N-Cycle OCP

min
w

N−1∑
k=0

Lc(zk, Uk) + E(x+
N−1)

s.t. 0 = Q⊤(x−
0 − x0),

0 = C(zk, Uk) k = 0, .., N − 1,

0 = Q⊤(x−
k − x+

k−1) k = 1, .., N − 1
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Central Difference Envelope-DAE

▶ Central Difference Envelope-DAE

dx

dτ
= x+ − x− (slope approx.)

0 = Q⊤
(
x+ + x−

2
− x

)
(connecting cond.)

0 = C(z, U) (cycle cond.).
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dτ
= x+ − x− (slope approx.)

0 = Q⊤
(
x+ + x−

2
− x

)
(connecting cond.)

0 = C(z, U) (cycle cond.).

▶ summarize by fe(x, z) := x+ − x− and 0 = ge(x, z) with
x = x and z = (x+, x−, T )
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dτ
= x+ − x− (slope approx.)

0 = Q⊤
(
x+ + x−

2
− x

)
(connecting cond.)
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▶ Macro-Integration of the Envelope-DAE over τ ∈ [0, N ]

dx

dτ
(τ) = fe(x(τ), z(τ))

0 = ge(x(τ), z(τ))
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Example Integration: Predator-Prey IVP
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Example Integration: Predator-Prey IVP
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Control Parametrization

▶ Control matrix

U(τ) = [u0(τ), u1(τ), . . . , uNctr−1(τ)] ∈ Rnu×Nctr

▶ U(τi) parametrizes the control trajectory u(τ)
of the cycle starting at τi.

▶ Simplest case: constant periodic control

U(τ) = Uconst

▶ DAE:

ẋ = fe(x(τ), z(τ), U(τ))

0 = ge(x(τ), z(τ), U(τ))
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Example: Predator Prey OCP

min
xe(·), ze(·), U(·)

∥xe(N)− x̄N∥2Q

s.t. 0 = xe(0)− x̄0,

ẋe = fe(xe(τ), ze(τ), U(τ)), τ ∈ [0, N ],

0 = ge(xe(τ), ze(τ), U(τ)), τ ∈ [0, N ],

0 ≤ h(xe(τ), ze(τ), U(τ)), τ ∈ [0, N ]

▶ Drive populations to target state x̄N = [1, 0.7]⊤.

▶ Discretize with 3 stage Gauss-Legendre collocation
scheme over N = 20 periods.

▶ The target state cannot be reached!
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▶ Discretize with 3 stage Gauss-Legendre collocation
scheme over N = 20 periods.

▶ The target state cannot be reached!
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Highly Oscillatory Trajectories

▶ Large approximation and integration error if the
envelope is not smooth enough

▶ ’Wrong’ trajectories might be more ’optimal’

▶ Make sure that we maintain highly oscillatory
trajectories with slowly changing envelope

▶ Ex: Regularization on 2nd envelope derivative

J = ∥xend − x̄end∥2Q + α

d∑
i=1

biw
2
i

where wi = ẍe(τi)
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Efficient Numerical Optimal Control for Highly Oscillatory Systems Jakob Harzer, Jochem De Schutter, Moritz Diehl 13



Highly Oscillatory Trajectories

▶ Large approximation and integration error if the
envelope is not smooth enough

▶ ’Wrong’ trajectories might be more ’optimal’

▶ Make sure that we maintain highly oscillatory
trajectories with slowly changing envelope

▶ Ex: Regularization on 2nd envelope derivative

J = ∥xend − x̄end∥2Q + α

d∑
i=1

biw
2
i

where wi = ẍe(τi)
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Example: Low Thrust Satellite

▶ Move satellite from circular park orbit at
500 km to mission orbit at 1400 km, problem of
[1].

▶ Pertubations from earth oblatness are much
stronger than thrust, they induce oscillations in
the orbit parameters

▶ We require a large number of controlled orbits
to reach the target orbit ȳ = [ā, ē, ī, ω̄]

▶ Here: Two stages with N = 289 orbits, we
search for an optimal periodic control scheme
with Nctrl = 30 controls for each orbit in both
stages
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Example: Low Thrust Satellite

▶ State: Modified Equinoctial Elements

x = [p, f, g, h, k, L,m, t]⊤ ∈ R8

▶ Controls: Thrust Vector u ∈ R3

▶ Phase Conditions:

L− + L0 = 0

L+ + L0 − 2π = 0

▶ Constant periodic control for each stage

Ui = [u0, u1, . . . , u29] ∈ R3×30, i = 1, 2

min
xe(·),ze(·),

U1,U2

m(2N)

s.t. 0 = x(0)− x̄0,

ẋ = fe(xe, ze, U1), τ ∈ [0, N ],

0 = ge(xe, ze, U1), τ ∈ [0, N ],

0 ≤ h(x, z, U1), τ ∈ [0, N ],

ẋ = fe(xe, ze, U2), τ ∈ [N, 2N ],

0 = ge(xe, ze, U2), τ ∈ [N, 2N ],

0 ≤ h(xe, ze, U2), τ ∈ [N, 2N ],

xend ≤ xe(2N) ≤ xend
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Example: Low Thrust Satellite - Solution
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Example: Low Thrust Satellite - Results

▶ Effectively simulate only 10 out of 578
orbits

▶ NLP size reduced from ≈ 555000 to 17344
variables

▶ Maximum relative error: 1.1 · 10−4 in state
g

▶ Optimal final mass m = 155.48 kg almost
coincides with result of [1]
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Summary

Summary
▶ Integration method for highly oscillatory systems:

1. Micro-integrate the system dynamics over one period

2. Construct a DAE that approximates the envelope of the highly oscillatory state trajectories

3. Macro-integrate the DAE over a large number of periods N

▶ Parametrize the controls for one period with U(τ).

▶ Possibility to reduce the problem size by magnitudes

▶ Make sure that trajectories stay highly oscillatory

In the future

▶ Constraint satisfaction over the whole horizon

▶ Variable number of cycles
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Thank you for your attention!
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Example: Low Thrust Satellite - Solution
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Example: Low Thrust Satellite - States 1
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Example: Low Thrust Satellite - States 2

0 200 400 600 800 1000

Time in h

0.00

0.05

0.10

0.15

0.20

k

Simulation

Macro-Integration

Micro-Integration

0 200 400 600 800 1000

Time in h

0

500

1000

1500

2000

2500

3000

3500

L

Simulation

Macro-Integration

Micro-Integration

0 200 400 600 800 1000

Time in h

156

157

158

159

160

m

Simulation

Macro-Integration

Micro-Integration

0 200 400 600 800 1000

Time in h

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

t

×106

Simulation

Macro-Integration

Micro-Integration

Efficient Numerical Optimal Control for Highly Oscillatory Systems Jakob Harzer, Jochem De Schutter, Moritz Diehl 24



Regularization on Second State Derivative Solves the Problem

Left (red): too small regularization Right (green): sufficiently high regularization

Note: ”sweet spot” around α = 0.5 · 10−3 where objective is unaffected by regularization
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Macro-Integration of the DAE

▶ Integrate DAE from x0 over N periods

▶ Single implicit d-stage Runge-Kutta step with butcher
coefficients c, A, b:

0 = x0 − x̄0

0 = xN − x0 +N

d∑
j=1

bjvj

0 = xi − x0 +N

d∑
j=1

ai,jvj i = 1, . . . , d

0 = vi − fe(xi, zi) i = 1, . . . , d

0 = ge(xi, zi) i = 1, . . . , d

▶ Computational effort is independent of the number of periods
N !

Butcher tableau:

c1 a1,1 a1,2 . . . a1,d
c2 a2,1 a2,2 . . . a2,d
...

...
...

. . .
...

cd ad,1 ad,2 . . . ad,d
b1 b2 . . . bd

Forward Euler, d = 1:

0 0
1
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Example: Predator Prey OCP

min
w

∥xN − x̄N∥2Q
s.t. 0 = x0 − x̄0,

0 = xN − x0 +N

d∑
j=1

bjvj ,

0 = xi − x0 +N

d∑
j=1

ai,jvj i = 1, . . . , d,

0 = vi − fe(xi, zi, Uconst) i = 1, . . . , d,

0 = ge(xi, zi, Uconst) i = 1, . . . , d,

0 ≤ h(w)

▶ w = (x0, x1, . . . , xd, v1, . . . , vd, z1, . . . , zd, xN , Uconst)
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Example: Predator Prey OCP

min
w

∥xN − x̄N∥2Q
s.t. 0 = x0 − x̄0,

0 = xN − x0 +N

d∑
j=1

bjvj ,

0 = xi − x0 +N

d∑
j=1

ai,jvj i = 1, . . . , d,

0 = vi − fe(xi, zi, Uconst) i = 1, . . . , d,

0 = ge(xi, zi, Uconst) i = 1, . . . , d,

0 ≤ h(w)

▶ U∗
const = [−2, 2, 2] · 10−3
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Phase Issue

ẋ =

[
ẏ
ṫ

]
=

[
−y − sin(ωt)

1

]
(3)

x(τ) =

[
x(τ)
t(τ)

]
=

[
Ce−Tτ − sin(2πτ)

ω2+1 + ω cos(2πτ)
ω2+1

Tτ

]
(4)
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Numerical Time

▶ Physical time: t ∈ [0, tf ] → Numerical time: τ ∈ [0, N ]

▶ Scaling with period duration T :

τ(t) =
t

T
t(τ) = τT

▶ Trajectories now in numerical time as x(τ), dynamics
read

dx

dτ
(τ) = Tf(x(τ))

▶ With numerical time, we can integrate over whole
periods

▶ Physical time t can be included as a state
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