Dynamic Soaring in Wind Turbine Wakes ECC 2023 Presentation

Jakob Harzer, Jochem De Schutter, Moritz Diehl, Johan Meyers

Systems Control and Optimization Laboratory

June 15, 2023

Motivation

https://www.rechargenews.com/wind/blockage-effect-insight-shows-science-of-wind-still-evolving/2-1-713787

Dynamic Soaring

https://doi.org/10.1016/j.pocean.2014.11.002

Dynamic Soaring in Wind Turbine Wakes

Jakob Harzer, Jochem De Schutter, Moritz Diehl, Johan Meyers

Dynamic Soaring

https://doi.org/10.1016/j.pocean.2014.11.002

1. Can we find a periodic soaring orbit for a glider in the wake of a windturbine?

Dynamic Soaring

https://doi.org/10.1016/j.pocean.2014.11.002

1. Can we find a periodic soaring orbit for a glider in the wake of a windturbine?

2. How much can we 'revitalize' the flow of the turbine?

Setup

Symbol	Value	Unit	
$r_{ m tur}$	57.85	m	
$h_{ m tur}$	122	m	
$r_{\rm wake}$	82	m	
$v_{\rm w,ref}$	10	${ m ms^{-1}}$	

Table: Setup Parameter

_

Glider Model

States:

$x = \begin{bmatrix} p \\ v \\ F_{\rm L} \\ \dot{F}_{\rm L} \end{bmatrix} \in$	$\in \mathbb{R}^{12}$
--	-----------------------

_

Controls:

 $u = \ddot{F}_{\rm L} \in \mathbb{R}^3$

Parameter	Symbol	Value	Unit
mass	m	36.8	kg
max. lift coefficient	$C_{ m L,max}$	1.5	-
parasitic drag	$C_{\mathrm{D},0}$	0.01	-
aspect ratio	\mathcal{R}	10	-
Oswald efficiency factor	O_e	0.8	-
wing area	$A_{ m W}$	3	m^2
wing span	b	5.5	m

Table: AP2 Glider Parameter

Glider Model

$$\begin{split} f(x,u) &= \frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} p \\ v \\ F_{\mathrm{L}} \\ \dot{F}_{\mathrm{L}} \end{bmatrix} = \begin{bmatrix} v \\ \frac{1}{m} (F_{\mathrm{L}} + F_{\mathrm{D}} + F_{\mathrm{g}}) \\ \dot{F}_{\mathrm{L}} \\ u \end{bmatrix} \\ 0 &= F_{\mathrm{L}}^{T} v_{\mathrm{a}} \\ \|F_{\mathrm{L}}\|_{2} &\leq \frac{1}{2} \rho A_{\mathrm{W}} C_{\mathrm{L,max}} \|v_{\mathrm{a}}\|_{2}^{2} \end{split}$$

where

$$v_{\mathbf{a}} = v - v_{w}(p) \qquad \qquad C_{\mathrm{L}} = \frac{\|F_{L}\|_{2}}{\frac{1}{2}\rho A_{\mathrm{W}}\|v_{\mathrm{a}}\|_{2}^{2}} \qquad F_{\mathrm{D}} = \frac{v_{\mathrm{a}}}{\|v_{\mathrm{a}}\|_{2}} \frac{1}{2}\rho A_{\mathrm{W}}(C_{\mathrm{D},0} + \beta C_{\mathrm{L}}^{2})\|v_{\mathrm{a}}\|_{2}^{2}$$

► Divide periodic trajectory phases outside and inside of the wake of durations T_o and T_i such that $T_o + T_i = t_f$

- ► Divide periodic trajectory phases outside and inside of the wake of durations T_o and T_i such that $T_o + T_i = t_f$
- Maximize the momentum transfer from the outer wind field into the inner wake wind field

- ▶ Divide periodic trajectory phases outside and inside of the wake of durations T_o and T_i such that $T_o + T_i = t_f$
- Maximize the momentum transfer from the outer wind field into the inner wake wind field
- The extracted momentum in the outer phase of the trajectory has to be transferred back to the wake wind field in the inner phase of the trajectory

- Divide periodic trajectory phases outside and inside of the wake of durations T_o and T_i such that T_o + T_i = t_f
- Maximize the momentum transfer from the outer wind field into the inner wake wind field
- The extracted momentum in the outer phase of the trajectory has to be transferred back to the wake wind field in the inner phase of the trajectory
- Revitalization Force

$$F_{\rm Rev} = \frac{1}{t_{\rm f}} \int_0^{T_{\rm o}} e_y^\top F(\tau) \ \mathrm{d}\tau$$

Objective

- Divide periodic trajectory phases outside and inside of the wake of durations T_o and T_i such that T_o + T_i = t_f
- Maximize the momentum transfer from the outer wind field into the inner wake wind field
- The extracted momentum in the outer phase of the trajectory has to be transferred back to the wake wind field in the inner phase of the trajectory
- Revitalization Force

$$F_{\text{Rev}} = \frac{1}{t_{\text{f}}} \int_0^{T_{\text{o}}} e_y^{\top} F(\tau) \, \mathrm{d}\tau$$

$$J_{\text{eco}} = \frac{1}{t_{\text{f}}} \int_{0}^{T_{\text{o}}} e_{y}^{\top} F(\tau) \, \mathrm{d}\tau$$
$$J_{\text{reg}} = \epsilon_{u} \int_{0}^{t_{\text{f}}} \|u(\tau)\|^{2} \, \mathrm{d}\tau$$

Optimal Control Problem

$\begin{array}{c} \underset{x(\cdot),u(\cdot), \\ T_{\Omega}, T_{\mathrm{i}}}{\min} \end{array}$	$-J_{ m eco} + J_{ m reg}$		(1a)
subject to	$0 = p_y(0),$		(1b)
	$0 = \dot{x}(t) - f(x(t), u(t))$	$\forall t \in [0, t_{\rm f}],$	(1c)
	$0 = v_{\rm a}(t)^{\top} F_{\rm L}(t)$	$\forall t \in [0, t_{\rm f}],$	(1d)
	$0 \ge \ F_{\rm L}(t)\ _2 - F_{\rm L,max}(t)$	$\forall t \in [0, t_{\rm f}],$	(1e)
	$0 \ge \alpha_{\rm roll}(t) - \alpha_{\rm roll,max}$	$\forall t \in [0, t_{\rm f}],$	(1f)
	$0 \le \alpha_{\rm roll}(t) + \alpha_{\rm roll,max}$	$\forall t \in [0, t_{\rm f}],$	(1g)
	$0 \le r(p(t)) - r_{\rm wake}$	$\forall t \in [0, T_{\rm o}],$	(1h)
	$0 \ge r(p(t)) - r_{\text{wake}}$	$\forall t \in [T_{\rm o}, t_{\rm f}],$	(1i)
	$0 = x(t_{\rm f}) - x(0)$		(1j)

▶ In each phase: 50 collocation intervals with Raudau collocation of order 3

- ▶ In each phase: 50 collocation intervals with Raudau collocation of order 3
- Enforce the equalities/inequalities at each collocation point

- ▶ In each phase: 50 collocation intervals with Raudau collocation of order 3
- Enforce the equalities/inequalities at each collocation point
- \blacktriangleright One Control at each collocation point \rightarrow polynomial instead of piecewise constant controls

- ▶ In each phase: 50 collocation intervals with Raudau collocation of order 3
- Enforce the equalities/inequalities at each collocation point
- One Control at each collocation point \rightarrow polynomial instead of piecewise constant controls
- Solve using a homotopy that moves from a tracking objective to the economic objective

- ▶ In each phase: 50 collocation intervals with Raudau collocation of order 3
- Enforce the equalities/inequalities at each collocation point
- \blacktriangleright One Control at each collocation point \rightarrow polynomial instead of piecewise constant controls
- Solve using a homotopy that moves from a tracking objective to the economic objective
- IPOPT converges to a solution with ~ 10 k variables ~ 70 s.

Revitalization force:

 $F_{\rm rev}=0.585\,{\rm kN}$

- Revitalization force:
 - $F_{\rm rev}=0.585\,{\rm kN}$
- Compare with Turbine thrust force:

$$F_{\rm tur} = 4a(1-a)\frac{1}{2}
ho A_{
m tur}u_{
m ref}^2 = 286\,{\rm kN}$$

- Revitalization force:
 - $F_{\rm rev}=0.585\,{\rm kN}$
- Compare with Turbine thrust force:

$$F_{
m tur} = 4a(1-a)rac{1}{2}
ho A_{
m tur}u_{
m ref}^2 = 286\,{
m kN}$$

 \blacktriangleright Amounts to $\approx 0.2\,\%$ of the turbine thrust force

- Revitalization force:
 - $F_{\rm rev}=0.585\,{\rm kN}$
- Compare with Turbine thrust force:

$$F_{\rm tur} = 4a(1-a)\frac{1}{2}
ho A_{
m tur}u_{
m ref}^2 = 286\,{\rm kN}$$

- \blacktriangleright Amounts to $\approx 0.2\,\%$ of the turbine thrust force
- Option 1: Bigger Glider

- Revitalization force:
 - $F_{\rm rev} = 0.585 \, \mathrm{kN}$
- Compare with Turbine thrust force:

$$F_{
m tur} = 4a(1-a)rac{1}{2}
ho A_{
m tur}u_{
m ref}^2 = 286\,{
m kN}$$

- \blacktriangleright Amounts to $\approx 0.2\,\%$ of the turbine thrust force
- Option 1: Bigger Glider
- Option 2: Propeller + Energy Storage

Bigger Glider

Bigger Glider

Bigger Glider

 \blacktriangleright $F_{\rm rev}/F_{\rm tur} \approx 1\%$

Add a Propeller and a capacitor to the glider to store energy

- Add a Propeller and a capacitor to the glider to store energy
- Add control for propeller force to the model

 $-500\,\mathrm{N} \leq F_\mathrm{p} \leq 500\,\mathrm{N}$

- Add a Propeller and a capacitor to the glider to store energy
- Add control for propeller force to the model

 $-500\,\mathrm{N} \leq F_\mathrm{p} \leq 500\,\mathrm{N}$

Add periodic state for the stored energy

Dynamic Soaring in Wind Turbine Wakes

Jakob Harzer, Jochem De Schutter, Moritz Diehl, Johan Meyers

 \blacktriangleright $F_{\rm rev}/F_{\rm tur} \approx 0.5\%$

Periodic dynamic soaring orbits exist!

- Periodic dynamic soaring orbits exist!
- ▶ We can revitalize the wake (a bit), but not yet enough to make it worthwhile

- Periodic dynamic soaring orbits exist!
- ▶ We can revitalize the wake (a bit), but not yet enough to make it worthwhile
- Other Applications: monitoring, wind measurements etc., since you 'fly for free' in the wake of a turbine

Thank you for your attention

Appendix

Dynamic Soaring in Wind Turbine Wakes

Jakob Harzer, Jochem De Schutter, Moritz Diehl, Johan Meyers