Implicit Central Difference Approximations of Averaged Dynamics of Oscillatory Systems

Jakob Harzer, Jochem De Schutter, Per Rutquist and Moritz Diehl

Syscop Group Retreat Autumn 2023 September 18, 2023

-Optimization-

Simulation

Implicit Central Difference Approximations of Averaged Dynamics of Oscillatory Systems

Implicit Central Difference Approximations of Averaged Dynamics of Oscillatory Systems

 $\blacktriangleright X(\tau)$ is a trajectory of

$$\frac{d}{d\tau}X = F(X) \tag{1}$$

 τ

 \blacktriangleright $X(\tau)$ is a trajectory of

$$\frac{d}{d\tau}X = F(X) \tag{1}$$

But unfortunately we don't know the dynamics F

 $\blacktriangleright X(\tau)$ is a trajectory of

$$\frac{d}{d\tau}X = F(X) \tag{1}$$

- But unfortunately we don't know the dynamics F
- $\blacktriangleright \ \ {\rm At \ some \ } X^* = X(\tau^*) \ \ {\rm approximate \ } F(X^*)$

 $\blacktriangleright X(\tau)$ is a trajectory of

$$\frac{d}{d\tau}X = F(X) \tag{1}$$

- But unfortunately we don't know the dynamics F
- $\blacktriangleright \ \ {\rm At \ some \ } X^* = X(\tau^*) \ \ {\rm approximate \ } F(X^*)$
- Tool: Solution Operator

$$X(\tau + 1) = \Phi_1^F(X(\tau))$$
 (2)

 $\blacktriangleright X(\tau)$ is a trajectory of

$$\frac{d}{d\tau}X = F(X) \tag{1}$$

- But unfortunately we don't know the dynamics F
- $\blacktriangleright \ \, {\rm At \ some \ } X^* = X(\tau^*) \ \, {\rm approximate \ } F(X^*)$
- Tool: Solution Operator
 - $X(\tau + 1) = \Phi_1^F(X(\tau))$ (2)
 - $= \Psi^{1}(X(\tau))$ (3)

• $X(\tau)$ is a trajectory of

$$\frac{d}{d\tau}X = F(X) \tag{1}$$

- But unfortunately we don't know the dynamics F
- $\blacktriangleright \ \, {\rm At \ some \ } X^* = X(\tau^*) \ \, {\rm approximate \ } F(X^*)$
- Tool: Solution Operator
 - $X(\tau + 1) = \Phi_1^F(X(\tau))$ (2)
 - $= \Psi^{1}(X(\tau))$ (3)

 $\blacktriangleright \ X(\tau)$ is a trajectory of

$$\frac{d}{d\tau}X = F(X) \tag{1}$$

- But unfortunately we don't know the dynamics F
- $\blacktriangleright \ \, {\rm At \ some \ } X^* = X(\tau^*) \ \, {\rm approximate \ } F(X^*)$
- Tool: Solution Operator
 - $X(\tau + 1) = \Phi_1^F(X(\tau))$ (2)
 - $= \Psi^{1}(X(\tau))$ (3)

 $\blacktriangleright \ X(\tau)$ is a trajectory of

$$\frac{d}{d\tau}X = F(X) \tag{1}$$

- But unfortunately we don't know the dynamics F
- $\blacktriangleright \ \, {\rm At \ some \ } X^* = X(\tau^*) \ \, {\rm approximate \ } F(X^*)$
- Tool: Solution Operator
 - $X(\tau + 1) = \Phi_1^F(X(\tau))$ (2)
 - $= \Psi^{1}(X(\tau))$ (3)

Implicit Central Difference Approximations of Averaged Dynamics of Oscillatory Systems

Implicit Central Difference Approximations of Averaged Dynamics of Oscillatory Systems

• Two points (X'_1, X'_2) at times $(\tau^* - 0.5, \tau^* + 0.5)$.

Implicit Central Difference Approximations

- Two points (X'_1, X'_2) at times $(\tau^* 0.5, \tau^* + 0.5)$.
- ► Interpolating polynomial *P*.

- Two points (X'_1, X'_2) at times $(\tau^* 0.5, \tau^* + 0.5)$.
- Interpolating polynomial P.
- ► Solve for X'_1, X'_2 :

$$0 = X'_2 - \Psi(X'_1)$$
 (6a)

$$0 = P(\tau^*) - X^*$$
 (6b)

- Two points (X'_1, X'_2) at times $(\tau^* 0.5, \tau^* + 0.5).$
- Interpolating polynomial P.
- ► Solve for X'_1, X'_2 :

$$0 = X'_2 - \Psi(X'_1)$$
 (6a)

$$0 = P(\tau^*) - X^*$$
 (6b)

Approximate the dynamics as

$$F(X^*) \approx \frac{X'_2 - X'_1}{1}$$
 (7)

Implicit Central Difference Approximations

 We need to solve a nonlinear system of equations.

- We need to solve a nonlinear system of equations.
- ▶ Effort: $\Psi \times 1$

- We need to solve a nonlinear system of equations.
- Effort: $\Psi \times 1$
- Points X'₁, X'₂ lie on a solution of the system X'(τ), that is not X(τ).

• Three points (X'_1, X'_2, X'_3) at times $(\tau^* - 1, \tau^*, \tau^* + 1)$.

• Three points (X'_1, X'_2, X'_3) at times $(\tau^* - 1, \tau^*, \tau^* + 1)$.

- Three points (X'_1, X'_2, X'_3) at times $(\tau^* 1, \tau^*, \tau^* + 1).$
- The points satisfy

$$X'_2 = \Psi(X'_1)$$
 (8)

$$X'_3 = \Psi(X'_2) \tag{9}$$

$$P(\tau^*) = X(\tau^*) \tag{10}$$

- Three points (X'_1, X'_2, X'_3) at times $(\tau^* 1, \tau^*, \tau^* + 1)$.
- The points satisfy

$$X_2' = \Psi(X_1') \tag{8}$$

$$X_3' = \Psi(X_2') \tag{9}$$

$$P(\tau^*) = X(\tau^*)$$
 (10)

- Three points (X'_1, X'_2, X'_3) at times $(\tau^* 1, \tau^*, \tau^* + 1)$.
- The points satisfy

$$X_2' = \Psi(X_1') \tag{8}$$

$$X'_3 = \Psi(X'_2) \tag{9}$$

$$P(\tau^*) = X(\tau^*)$$
 (10)

Approximate the dynamics as

$$F(X^*) \approx \frac{X'_3 - X'_1}{2}$$
 (11)

- Three points (X'_1, X'_2, X'_3) at times $(\tau^* 1, \tau^*, \tau^* + 1)$.
- The points satisfy

$$X_2' = \Psi(X_1') \tag{8}$$

$$X'_3 = \Psi(X'_2) \tag{9}$$

- $P(\tau^*) = X(\tau^*)$ (10)
- Approximate the dynamics as

$$F(X^*) \approx \frac{X'_3 - X'_1}{2}$$
 (11)

We recover the explicit central difference scheme from before!

Let $\tau = \tau^* + \Delta \tau$, K stroboscopic points X'_1, \ldots, X'_K at equidistant times

$$\Delta \tau_k = k - \frac{K+1}{2}, \qquad k = 1, \dots, K$$
 (12)

• Let $\tau = \tau^* + \Delta \tau$, K stroboscopic points X'_1, \ldots, X'_K at equidistant times

$$\Delta \tau_k = k - \frac{K+1}{2}, \qquad k = 1, \dots, K$$
 (12)

▶ i.e.

$$\Delta \tau_k \in \begin{cases} \{\dots, -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \dots\} & \text{for } K \text{ even} \\ \{\dots, -1, 0, 1, \dots\} & \text{for } K \text{ odd} \end{cases}$$
(13)

• Let $\tau = \tau^* + \Delta \tau$, K stroboscopic points X'_1, \ldots, X'_K at equidistant times

$$\Delta \tau_k = k - \frac{K+1}{2}, \qquad k = 1, \dots, K$$
 (12)

▶ i.e.

$$\Delta \tau_k \in \begin{cases} \{\dots, -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \dots\} & \text{for } K \text{ even} \\ \{\dots, -1, 0, 1, \dots\} & \text{for } K \text{ odd} \end{cases}$$
(13)

Interpolating polynomial

$$P(\Delta \tau) = \sum_{k=1}^{K} \ell_k(\Delta \tau) X'_k, \quad \text{where} \quad \ell_k(\Delta \tau) = \prod_{n=1, k \neq n}^{K} \frac{(\Delta \tau - \Delta \tau_n)}{(\Delta \tau_k - \Delta \tau_n)}$$
(14)

▶ Let $\tau = \tau^* + \Delta \tau$, K stroboscopic points X'_1, \ldots, X'_K at equidistant times

$$\Delta \tau_k = k - \frac{K+1}{2}, \qquad k = 1, \dots, K$$
 (12)

▶ i.e.

$$\Delta \tau_k \in \begin{cases} \{\dots, -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \dots\} & \text{for } K \text{ even} \\ \{\dots, -1, 0, 1, \dots\} & \text{for } K \text{ odd} \end{cases}$$
(13)

Interpolating polynomial

$$P(\Delta \tau) = \sum_{k=1}^{K} \ell_k(\Delta \tau) X'_k, \quad \text{where} \quad \ell_k(\Delta \tau) = \prod_{n=1, k \neq n}^{K} \frac{(\Delta \tau - \Delta \tau_n)}{(\Delta \tau_k - \Delta \tau_n)}$$
(14)

with

$$P(0) = \sum_{k=1}^{K} \ell_k(0) X'_k, \qquad \dot{P}(0) = \sum_{k=1}^{K} \dot{\ell}_k(0) X'_k.$$
(15)

▶ Let $\tau = \tau^* + \Delta \tau$, K stroboscopic points X'_1, \ldots, X'_K at equidistant times

$$\Delta \tau_k = k - \frac{K+1}{2}, \qquad k = 1, \dots, K$$
 (12)

▶ i.e.

$$\Delta \tau_k \in \begin{cases} \{\dots, -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \dots\} & \text{for } K \text{ even} \\ \{\dots, -1, 0, 1, \dots\} & \text{for } K \text{ odd} \end{cases}$$
(13)

Interpolating polynomial

$$P(\Delta \tau) = \sum_{k=1}^{K} \ell_k(\Delta \tau) X'_k, \quad \text{where} \quad \ell_k(\Delta \tau) = \prod_{n=1, k \neq n}^{K} \frac{(\Delta \tau - \Delta \tau_n)}{(\Delta \tau_k - \Delta \tau_n)}$$
(14)

with

$$P(0) = \sum_{k=1}^{K} b_k X'_k, \qquad \dot{P}(0) = \sum_{k=1}^{K} c_k X'_k.$$
(15)

Solve

$$0 = X_2' - \Psi(X_1')$$
 (16a)

$$0 = X'_K - \Psi(X'_{K-1})$$
(16c)

$$0 = X^* - \sum_{k=1}^{N} b_k X'_k, \tag{16d}$$

Solve

$$0 = X_2' - \Psi(X_1')$$
 (16a)

$$0 = X'_K - \Psi(X'_{K-1}) \tag{16c}$$

$$0 = X^* - \sum_{k=1}^{K} b_k X'_k, \tag{16d}$$

Approximate the dynamics as

$$F(X^*) \approx \sum_{k=1}^{K} c_k X'_k \tag{17}$$

Example: K = 4

Implicit Central Difference Approximations

J. Harzer, J. De Schutter, P. Rutquist and M. Diehl

Implicit Central Difference Approximations of Averaged Dynamics of Oscillatory Systems

Implicit Central Difference Approximations of Averaged Dynamics of Oscillatory Systems

 $\blacktriangleright\,$ Highly Oscillatory Systems with $\epsilon \ll 1$

 $\dot{x} = f_0(x) + \epsilon f_1(x,\tau)$

 $\blacktriangleright\,$ Highly Oscillatory Systems with $\epsilon \ll 1$

 $\dot{x} = f_0(x) + \epsilon f_1(x,\tau)$

Oscillatory Dynamics

 $\dot{x} = f_0(x)$

with 1-periodic solution $x_0(\tau)$.

 $\blacktriangleright\,$ Highly Oscillatory Systems with $\epsilon \ll 1$

$$\dot{x} = f_0(x) + \epsilon f_1(x,\tau)$$

Oscillatory Dynamics

$$\dot{x} = f_0(x)$$

with 1-periodic solution $x_0(\tau)$.

 $\blacktriangleright\,$ Highly Oscillatory Systems with $\epsilon \ll 1$

$$\dot{x} = f_0(x) + \epsilon f_1(x,\tau)$$

Oscillatory Dynamics

$$\dot{x} = f_0(x)$$

with 1-periodic solution $x_0(\tau)$.

 $\blacktriangleright\,$ Highly Oscillatory Systems with $\epsilon \ll 1$

$$\dot{x} = f_0(x) + \epsilon f_1(x,\tau)$$

Oscillatory Dynamics

$$\dot{x} = f_0(x)$$

with 1-periodic solution $x_0(\tau)$.

- The perturbed solution $x(\tau)$ and unperturbed $x_0(\tau)$ differ by
 - $||x_0(\tau) x(\tau)|| = \mathcal{O}(\epsilon)$

on a timescale of 1.

$$\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t)$$

Implicit Central Difference Approximations

$$\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t)$$
Averaging

Implicit Central Difference Approximations

$$\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t)$$
Averaging
$$\dot{x} = \epsilon F_1(x)$$

$$\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t)$$

$$Averaging$$

$$\dot{x} = \epsilon F_1(x)$$

2

$$\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t)$$
High Order Stroboscopic Averaging

Implicit Central Difference Approximations

$$\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t)$$
High Order Stroboscopic Averaging
$$\downarrow$$

$$\dot{X} = F(x) = \epsilon F_1(x) + \epsilon^2 F_2(x) + \dots$$

$$\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t)$$
High Order Stroboscopic Averaging
$$\dot{X} = F(x) = \epsilon F_1(x) + \epsilon^2 F_2(x) + \dots$$

► If x(0) = X(0) then the solution to averaged system satisfies

$$x(k) = X(k), \quad k \in \mathbb{Z}$$

$$\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t)$$
High Order Stroboscopic Averaging
$$\dot{X} = F(x) = \epsilon F_1(x) + \epsilon^2 F_2(x) + \dots$$

► If x(0) = X(0) then the solution to averaged system satisfies

 $x(k) = X(k), \quad k \in \mathbb{Z}$

• Original system f on timescale $\mathcal{O}(1)$

$$\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t)$$
High Order Stroboscopic Averaging
$$\dot{X} = F(x) = \epsilon F_1(x) + \epsilon^2 F_2(x) + \dots$$

► If x(0) = X(0) then the solution to averaged system satisfies

 $x(k) = X(k), \quad k \in \mathbb{Z}$

• Averaged system F on timescale $\mathcal{O}(1/\epsilon)$

From before:

$$\Psi(X) = \Phi_1^F(X)$$

Implicit Central Difference Approximations

From before:

$$\Psi(X) = \Phi_1^F(X)$$
$$= \Phi_1^f(X)$$

From before:

$$\Psi(X) = \Phi_1^F(X)$$
$$= \Phi_1^f(X)$$

Micro-integration

 $\Psi(X)\approx \tilde{\Phi}_1^f(X)$

by f.e. multiple RK steps.

From before:

$$\Psi(X) = \Phi_1^F(X)$$
$$= \Phi_1^f(X)$$

Micro-integration

 $\Psi(X)\approx \tilde{\Phi}_1^f(X)$

by f.e. multiple RK steps.

We can use this 'one-cycle' map to approximate the average dynamics!

Implicit Central Difference Approximations of Averaged Dynamics of Oscillatory Systems

Implicit Central Difference Approximations of Averaged Dynamics of Oscillatory Systems
Average Dynamics Approximation [1, 3]

Average Dynamics Approximation [1, 3]

Implicit Averaged Dynamics Approximation

$$0 = X'_{k+1} - \Psi(X'_k), \quad k = 1, \dots, N-1$$
$$0 = X^* - \sum_{k=1}^{K} b_k X'_k,$$

Approximate the dynamics as

$$F(X^*) \approx \sum_{k=1}^{K} c_k X'_k$$

Implicit Averaged Dynamics Approximation

$$0 = X'_{k+1} - \Psi(X'_k), \quad k = 1, \dots, N-1$$
$$0 = X^* - \sum_{k=1}^{K} b_k X'_k,$$

Approximate the dynamics as

$$F(X^*) \approx \sum_{k=1}^{K} c_k X'_k$$

Implicit Averaged Dynamics Approximation

$$0 = X'_{k+1} - \Psi(X'_k), \quad k = 1, \dots, N-1$$
$$0 = X^* - \sum_{k=1}^{K} b_k X'_k,$$

Approximate the dynamics as

$$F(X^*) \approx \sum_{k=1}^{K} c_k X'_k$$

Approximation Error: $\|F(X) - F_{\text{CD},K}(X)\| = \begin{cases} \mathcal{O}(\epsilon^{K+1}) & \text{for } K \text{ even} \\ \mathcal{O}(\epsilon^{K}) & \text{for } K \text{ odd} \end{cases}$

Approximation Error

Implicit Central Difference Approximations

J. Harzer, J. De Schutter, P. Rutquist and M. Diehl

20

• At some point (τ^*, X^*) :

- At some point (τ^*, X^*) :
 - (a) perform one or more micro-integrations to evaluate the one-cycle map

- At some point (τ^*, X^*) :
 - (a) perform one or more micro-integrations to evaluate the one-cycle map
 - (b) approximate the averaged dynamics

- At some point (τ^*, X^*) :
 - (a) perform one or more micro-integrations to evaluate the one-cycle map
 - (b) approximate the averaged dynamics
- Macro-integrate the averaged dynamics

- At some point (τ^*, X^*) :
 - (a) perform one or more micro-integrations to evaluate the one-cycle map
 - (b) approximate the averaged dynamics
- Macro-integrate the averaged dynamics
- Integration horizon of integer size N cycles since

$$x(N) = X(N)$$

• At some point (τ^*, X^*) :

- (a) perform one or more micro-integrations to evaluate the one-cycle map
- (b) approximate the averaged dynamics
- Macro-integrate the averaged dynamics
- Integration horizon of integer size N cycles since

$$x(N) = X(N)$$

Three sources of error:

- At some point (τ^*, X^*) :
 - (a) perform one or more micro-integrations to evaluate the one-cycle map
 - (b) approximate the averaged dynamics
- Macro-integrate the averaged dynamics
- Integration horizon of integer size N cycles since

$$x(N) = X(N)$$

Three sources of error:
 (a) errors in the micro-integration

- At some point (τ^*, X^*) :
 - (a) perform one or more micro-integrations to evaluate the one-cycle map
 - (b) approximate the averaged dynamics
- Macro-integrate the averaged dynamics
- Integration horizon of integer size N cycles since

$$x(N) = X(N)$$

- Three sources of error:
 - (a) errors in the micro-integration
 - (b) errors in the approximation of the dynamics

- At some point (τ^*, X^*) :
 - (a) perform one or more micro-integrations to evaluate the one-cycle map
 - (b) approximate the averaged dynamics
- Macro-integrate the averaged dynamics
- Integration horizon of integer size N cycles since

$$x(N) = X(N)$$

- Three sources of error:
 - (a) errors in the micro-integration
 - (b) errors in the approximation of the dynamics
 - (c) errors in the macro-integration

• Linear Oscillator,
$$\epsilon = -10^{-3}$$

$$\frac{d}{d\tau}x = \begin{bmatrix} \epsilon & -2\pi \\ 2\pi & \epsilon \end{bmatrix} x$$

• Linear Oscillator, $\epsilon = -10^{-3}$

$$\frac{d}{d\tau}x = \begin{bmatrix} \epsilon & -2\pi \\ 2\pi & \epsilon \end{bmatrix}x$$

• Integrate over interval $\tau \in [0, 100]$

▶ Linear Oscillator, $\epsilon = -10^{-3}$

$$\frac{d}{d\tau}x = \begin{bmatrix} \epsilon & -2\pi \\ 2\pi & \epsilon \end{bmatrix}x$$

Integrate over interval τ ∈ [0, 100]
 Micro integrator: RK4, step size h, O(h⁴)

• Linear Oscillator, $\epsilon = -10^{-3}$

$$\frac{d}{d\tau}x = \begin{bmatrix} \epsilon & -2\pi \\ 2\pi & \epsilon \end{bmatrix}x$$

- ▶ Integrate over interval $\tau \in [0, 100]$
- Micro integrator: RK4, step size h, $\mathcal{O}(h^4)$
- ► Average dynamics Approx: $F_{\text{CD},K}$

• Linear Oscillator, $\epsilon = -10^{-3}$

$$\frac{d}{d\tau}x = \begin{bmatrix} \epsilon & -2\pi \\ 2\pi & \epsilon \end{bmatrix}x$$

- ▶ Integrate over interval $\tau \in [0, 100]$
- Micro integrator: RK4, step size h, $\mathcal{O}(h^4)$
- Average dynamics Approx: $F_{\text{CD},K}$
- Macro integrator: RK4, step size $H = 20, \mathcal{O}(H^4)$

• Linear Oscillator, $\epsilon = -10^{-3}$

$$\frac{d}{d\tau}x = \begin{bmatrix} \epsilon & -2\pi \\ 2\pi & \epsilon \end{bmatrix}x$$

- Integrate over interval $\tau \in [0, 100]$
- Micro integrator: RK4, step size h, $\mathcal{O}(h^4)$
- Average dynamics Approx: $F_{CD,K}$
- Macro integrator: RK4, step size $H = 20, \mathcal{O}(H^4)$

 Micro integration error is very dominant

- Micro integration error is very dominant
- Little sense in using high-order average dynamics approximations methods

- Micro integration error is very dominant
- Little sense in using high-order average dynamics approximations methods
- Gain of the implicit methods is in the reduced effort to compute the approximation

- Micro integration error is very dominant
- Little sense in using high-order average dynamics approximations methods
- Gain of the implicit methods is in the reduced effort to compute the approximation

▶ We derived implicit *K*-point methods to approximate the average dynamics

- ▶ We derived implicit *K*-point methods to approximate the average dynamics
- The implicit methods (K even) are just as good as the explicit ones (K odd), but require less effort

- ▶ We derived implicit K-point methods to approximate the average dynamics
- The implicit methods (K even) are just as good as the explicit ones (K odd), but require less effort
- ▶ We can integrate highly oscillatory systems very efficiently.

$$\frac{d}{d\tau}x = f_0(x) + \epsilon f_1(x, \mathbf{u}, \tau)$$
(19)

Thank you for your attention!

Useful Sources

 Mari Paz Calvo, Philippe Chartier, Ander Murua, and Jesús María Sanz-Serna.
 A stroboscopic numerical method for highly oscillatory problems.
 In Björn Engquist, Olof Runborg, and Yen-Hsi R. Tsai, editors, <u>Numerical Analysis of</u> <u>Multiscale Computations</u>, pages 71–85, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

Bengt Fornberg.

Generation of finite difference formulas on arbitrarily spaced grids. Mathematics of Computation, 51:699–706, 1988.

U. Kirchgraber.

An ode-solver based on the method of averaging. Numerische Mathematik, 53:621–652, 1988.

Jan Sanders, Ferdinand Verhulst, and J.B. Murdoch. Averaging methods in nonlinear dynamical systems, 2d ed. 01 2007.

Coefficients Implicit Approximation

$\Delta \tau$	-2	$-\frac{3}{2}$	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2
K = 2				$\frac{1}{2}$		$\frac{1}{2}$			
K = 3			0		1		0		
K = 4		$-\frac{1}{16}$		$\frac{9}{16}$		$\frac{9}{16}$		$-\frac{1}{16}$	
K = 5	0		0		1		0		0

Table: Coefficients b_k to relate the stroboscopic points X'_k to the integration point $X(\tau^*)$ via the interpolating polynomial. The lighter rows correspond to the introduced implicit method, the darker rows correspond to the existing explicit method.

Coefficients Implicit Approximation

$\Delta \tau$	-2	$-\frac{3}{2}$	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2
K = 2				-1		1			
K = 3			$-\frac{1}{2}$		0		$\frac{1}{2}$		
K = 4		$\frac{1}{24}$		$-\frac{9}{8}$		$\frac{9}{8}$		$-\frac{1}{24}$	
K = 5	$\frac{1}{12}$		$-\frac{2}{3}$		0		$\frac{2}{3}$		$-\frac{1}{12}$

Table: Coefficients c_k of the (implicit) central difference approximation, c.f. [2]. The lighter rows correspond to the introduced implicit method, the darker rows correspond to the existing explicit method.