
Implicit Central Difference Approximations of
Averaged Dynamics of Oscillatory Systems

Jakob Harzer, Jochem De Schutter, Per Rutquist and Moritz Diehl

Syscop Group Retreat Autumn 2023
September 18, 2023



Control

Implicit Central Difference Approximations J. Harzer, J. De Schutter, P. Rutquist and M. Diehl 1



Optimization

Implicit Central Difference Approximations J. Harzer, J. De Schutter, P. Rutquist and M. Diehl 1



Simulation

Implicit Central Difference Approximations J. Harzer, J. De Schutter, P. Rutquist and M. Diehl 1



Implicit Central Difference Approximations of
Averaged Dynamics of Oscillatory Systems

Implicit Central Difference Approximations J. Harzer, J. De Schutter, P. Rutquist and M. Diehl 2



Implicit Central Difference Approximations of
Averaged Dynamics of Oscillatory Systems

Implicit Central Difference Approximations J. Harzer, J. De Schutter, P. Rutquist and M. Diehl 3



Setting

τ

x
(τ

)

X(τ)

▶ X(τ) is a trajectory of

d

dτ
X = F (X) (1)

▶ But unfortunately we don’t know the
dynamics F

▶ At some X∗ = X(τ∗) approximate F (X∗)

▶ Tool: Solution Operator

X(τ + 1) = ΦF
1 (X(τ)) (2)
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Dynamics Approximations

F (X∗) ≈ Ψ1(X∗)−X∗

1
(4)
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Implicit Dynamics Approximation - 2 Points
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x
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)

X∗

X(τ)

▶ Two points (X ′
1, X

′
2) at times

(τ∗ − 0.5, τ∗ + 0.5).

▶ Interpolating polynomial P .

▶ Solve for X ′
1, X

′
2:

0 = X ′
2 −Ψ(X ′

1) (6a)

0 = P (τ∗)−X∗ (6b)

▶ Approximate the dynamics as

F (X∗) ≈ X ′
2 −X ′

1

1
(7)
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Implicit Dynamics Approximation - Observations
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X ′1

X(τ)

▶ We need to solve a nonlinear system of
equations.

▶ Effort: Ψ× 1

▶ Points X ′
1, X

′
2 lie on a solution of the

system X ′(τ), that is not X(τ).
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Implicit Dynamics Approximation - 3 Points

▶ Three points (X ′
1, X

′
2, X

′
3) at times

(τ∗ − 1, τ∗, τ∗ + 1).

▶ The points satisfy

X ′
2 = Ψ(X ′

1) (8)

X ′
3 = Ψ(X ′

2) (9)

P (τ∗) = X(τ∗) (10)

▶ Approximate the dynamics as

F (X∗) ≈ X ′
3 −X ′

1

2
(11)

▶ We recover the explicit central difference
scheme from before!
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Implicit Dynamics Approximation - K Points

▶ Let τ = τ∗ +∆τ , K stroboscopic points X ′
1, . . . , X

′
K at equidistant times

∆τk = k − K + 1

2
, k = 1, . . . ,K (12)

▶ i.e.

∆τk ∈
{
{. . . ,− 3

2 ,− 1
2 ,

1
2 ,

3
2 , . . . } for K even

{. . . ,−1, 0, 1, . . . } for K odd
(13)

▶ Interpolating polynomial

P (∆τ) =

K∑

k=1

ℓk(∆τ)X ′
k, where ℓk(∆τ) =

K∏

n=1,k ̸=n

(∆τ −∆τn)

(∆τk −∆τn)
(14)

▶ with

P (0) =

K∑

k=1

X ′
k, Ṗ (0) =

K∑

k=1

X ′
k. (15)

Implicit Central Difference Approximations J. Harzer, J. De Schutter, P. Rutquist and M. Diehl 10



Implicit Dynamics Approximation - K Points

▶ Let τ = τ∗ +∆τ , K stroboscopic points X ′
1, . . . , X

′
K at equidistant times

∆τk = k − K + 1

2
, k = 1, . . . ,K (12)

▶ i.e.

∆τk ∈
{
{. . . ,− 3

2 ,− 1
2 ,

1
2 ,

3
2 , . . . } for K even

{. . . ,−1, 0, 1, . . . } for K odd
(13)

▶ Interpolating polynomial

P (∆τ) =

K∑

k=1

ℓk(∆τ)X ′
k, where ℓk(∆τ) =

K∏

n=1,k ̸=n

(∆τ −∆τn)

(∆τk −∆τn)
(14)

▶ with

P (0) =

K∑

k=1

X ′
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(14)
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′
k, Ṗ (0) =

K∑

k=1

ckX
′
k. (15)
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Implicit Dynamics Approximation - K Points
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Example: K = 4

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

∆τ

X∗

X ′1
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X ′3

X ′4

X(τ)

Polynomial P (∆τ)
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Implicit Central Difference Approximations of
Averaged Dynamics of Oscillatory Systems
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Highly Oscillatory Systems

▶ Highly Oscillatory Systems with ϵ ≪ 1

ẋ = f0(x) + ϵf1(x, τ)

▶ Oscillatory Dynamics

ẋ = f0(x)

with 1-periodic solution x0(τ).

▶ The perturbed solution x(τ) and
unperturbed x0(τ) differ by

∥x0(τ)− x(τ)∥ = O(ϵ)

on a timescale of 1.
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ẋ = f0(x)

with 1-periodic solution x0(τ).

▶ The perturbed solution x(τ) and
unperturbed x0(τ) differ by

∥x0(τ)− x(τ)∥ = O(ϵ)

on a timescale of 1.

Implicit Central Difference Approximations J. Harzer, J. De Schutter, P. Rutquist and M. Diehl 14



Highly Oscillatory Systems

0 1 2 3 4 5

τ

x
(τ

)

Unperturbed Solution x0(τ)

Perturbed Solution x(τ)
▶ Highly Oscillatory Systems with ϵ ≪ 1
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Averaging Methods for Highly Oscillatory Systems

0 1 2 3 4 5

τ

x
(τ

)

Unperturbed Solution x0(τ)

Perturbed Solution x(τ)
ẋ = f(x) = f0(x) + ϵf1(x, t)

AveragingHigh Order Stroboscopic Averaging

Ẋ = ϵF1(x)Ẋ = F (x) = ϵF1(x) + ϵ2F2(x) + . . .

▶ If x(0) = X(0) then the solution to
averaged system satisfies

x(k) = X(k), k ∈ Z

▶ Averaged system F on timescale O(1/ϵ)
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ẋ = f(x) = f0(x) + ϵf1(x, t)

AveragingHigh Order Stroboscopic Averaging
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Ẋ = ϵF1(x)Ẋ = F (x) = ϵF1(x) + ϵ2F2(x) + . . .

▶ If x(0) = X(0) then the solution to
averaged system satisfies

x(k) = X(k), k ∈ Z

▶ Averaged system F on timescale O(1/ϵ)

Implicit Central Difference Approximations J. Harzer, J. De Schutter, P. Rutquist and M. Diehl 15



Averaging Methods for Highly Oscillatory Systems

0 1 2 3 4 5

τ

x
(τ

)

Perturbed Solution x(τ)

High Order Average Solution X(τ)

Stroboscopic Points
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One-Cycle Map

0 1 2 3 4 5

τ

x
(τ

)

Perturbed Solution x(τ)

High Order Average Solution X(τ)

Stroboscopic Points

▶ From before:

Ψ(X) = ΦF
1 (X)

▶ Micro-integration

Ψ(X) ≈ Φ̃f
1 (X)

by f.e. multiple RK steps.

▶ We can use this ’one-cycle’ map to
approximate the average dynamics!
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Implicit Central Difference Approximations of
Averaged Dynamics of Oscillatory Systems
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Average Dynamics Approximation [1, 3]

τ∗ − 1 τ∗ τ∗ + 1

x
(τ

) X∗

Ψ(X∗)

X(τ)

ΦFτ (X∗)

τ∗ − 1 τ∗ τ∗ + 1

x
(τ

) X

Ψ1(X)

Ψ−1(X)

X(τ)

ΦFτ (X∗)

F (X∗) ≈ Ψ1(X∗)−X∗

1
F (X∗) ≈ Ψ1(X∗)−Ψ−1(X∗)

2
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Implicit Averaged Dynamics Approximation

τ∗ − 1 τ∗ τ∗ + 1

x
(τ

)

X∗X∗

X ′2 = Ψ(X ′1)

X ′1

X(τ) ▶ Solve

0 = X ′
k+1 −Ψ(X ′

k), k = 1, . . . , N − 1

0 = X∗ −
K∑

k=1

bkX
′
k,

▶ Approximate the dynamics as

F (X∗) ≈
K∑

k=1

ckX
′
k

▶ Approximation Error:

∥F (X)− FCD,K(X)∥ =

{
O
(
ϵK+1

)
for K even

O
(
ϵK

)
for K odd
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Approximation Error

10−410−310−210−1

‖ε‖

10−12

10−10

10−8

10−6

10−4

E
rr

or

FCD,2 −O
(
ε3
)

FCD,3 −O
(
ε3
)

FCD,4 −O
(
ε5
)

FCD,5 −O
(
ε5
)

FCD,6 −O
(
ε7
)

FCD,7 −O
(
ε7
)
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Numerical Method for Efficient Simulation [1]

0 1 2 3 4 5 6 7

τ

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
(τ

)

Solution x(τ)

▶ At some point (τ∗, X∗):

(a) perform one or more micro-integrations
to evaluate the one-cycle map

(b) approximate the averaged dynamics

▶ Macro-integrate the averaged dynamics

▶ Integration horizon of integer size N
cycles since

x(N) = X(N)

▶ Three sources of error:

(a) errors in the micro-integration
(b) errors in the approximation of the

dynamics
(c) errors in the macro-integration
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Integration Experiment

▶ Linear Oscillator, ϵ = −10−3

d

dτ
x =

[
ϵ −2π
2π ϵ

]
x

▶ Integrate over interval τ ∈ [0, 100]

▶ Micro integrator: RK4, step size h,
O
(
h4

)

▶ Average dynamics Approx: FCD,K

▶ Macro integrator: RK4, step size
H = 20, O

(
H4

)
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Integration Experiment
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▶ Micro integration error is very
dominant

▶ Little sense in using high-order
average dynamics approximations
methods

▶ Gain of the implicit methods is in the
reduced effort to compute the
approximation
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Summary

▶ We derived implicit K-point methods to approximate the average dynamics

▶ The implicit methods (K even) are just as good as the explicit ones (K odd), but require
less effort

▶ We can integrate highly oscillatory systems very efficiently.

d

dτ
x = f0(x) + ϵf1(x,u, τ) (19)
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Sources

Thank you for your attention!
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Useful Sources

Mari Paz Calvo, Philippe Chartier, Ander Murua, and Jesús Maŕıa Sanz-Serna.
A stroboscopic numerical method for highly oscillatory problems.
In Björn Engquist, Olof Runborg, and Yen-Hsi R. Tsai, editors, Numerical Analysis of
Multiscale Computations, pages 71–85, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

Bengt Fornberg.
Generation of finite difference formulas on arbitrarily spaced grids.
Mathematics of Computation, 51:699–706, 1988.

U. Kirchgraber.
An ode-solver based on the method of averaging.
Numerische Mathematik, 53:621–652, 1988.

Jan Sanders, Ferdinand Verhulst, and J.B. Murdoch.
Averaging methods in nonlinear dynamical systems, 2d ed.
01 2007.
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Coefficients Implicit Approximation

∆τ -2 − 3
2 -1 − 1

2 0 1
2 1 3

2 2

K = 2 1
2

1
2

K = 3 0 1 0

K = 4 − 1
16

9
16

9
16 − 1

16

K = 5 0 0 1 0 0

Table: Coefficients bk to relate the stroboscopic points X ′
k to the integration point X(τ∗) via the

interpolating polynomial. The lighter rows correspond to the introduced implicit method, the darker
rows correspond to the existing explicit method.
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Coefficients Implicit Approximation

∆τ -2 − 3
2 -1 − 1

2 0 1
2 1 3

2 2

K = 2 -1 1

K = 3 − 1
2 0 1

2

K = 4 1
24 − 9

8
9
8 − 1

24

K = 5 1
12 − 2

3 0 2
3 − 1

12

Table: Coefficients ck of the (implicit) central difference approximation, c.f. [2]. The lighter rows
correspond to the introduced implicit method, the darker rows correspond to the existing explicit
method.
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