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Simplified Optimal Control Problem in ODE

terminal

constraint r(x(T )) ≥ 0

6
path constraints h(x, u) ≥ 0

initial value
x0 r states x(t)

controls u(t)

-p
0 t

p
T

Continuous Time Optimal Control Problem

minimize
x(·),u(·)

∫ T

0

L(x(t), u(t)) dt + E (x(T ))

subject to

x(0)− x0 = 0, (fixed initial value)

ẋ(t)−f(x(t), u(t)) = 0, t ∈ [0, T ], (ODE model)

h(x(t), u(t)) ≥ 0, t ∈ [0, T ], (path constraints)

r (x(T )) ≥ 0 (terminal constraints)
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(More general optimal control problems)

Many features left out here for simplicity of presentation:

I multiple dynamic stages

I differential algebraic equations (DAE) instead of ODE

I explicit time dependence

I constant design parameters

I multipoint constraints r(x(t0), x(t1), . . . , x(tend)) = 0
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Discrete Time Problem

Discrete Time Optimal Control Problem

min
x,u

N−1∑
k=0

L(xk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = f(xk, uk)

h(xk, uk) ≥ 0, k = 0, . . . , N−1

r (xN ) ≥ 0
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Optimal Control Family Tree

Three basic families:

I Dynamic Programming / Hamilton-Jacobi-Bellmann Equation

I Indirect Methods / Calculus of Variations / Pontryagin’s Maximum Principle

I Direct Methods, i.e., discretization combined with nonlinear programming
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Principle of Optimality

Any subarc of an optimal trajectory is also optimal.

6

intermediate
value x̄s

initial
value x0

s
states x(t)

optimal
controls u(t)

-p
0 t̄

p
T

Subarc on [t̄, T ] is optimal solution for initial value x̄.
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Dynamic Programming Cost-to-go (discrete time, unconstrained)

IDEA:

I Introduce optimal-cost-to-go function on [k,N ]

Jk(x) := min
sk,uk,...,sN

N−1∑
i=k

L(si, ui) + E (sN ) s.t. sk = x, . . .

I Use principle of optimality on intervals [k, k + 1]:

Jk(xk) = min
sk,uk,sk+1

L(sk, ak) + Jk+1(sk+1)

s.t. sk = xk, sk+1 = f(sk, uk)

xkr xk+1r
-

k+1k
p
N
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Dynamic Programming Step

Can simplify

Jk(xk) = min
sk,uk,sk+1

L(sk, uk) + Jk+1(sk+1)

s.t. sk = xk, sk+1 = f(sk, uk)

by trivial elimination of sk, sk+1 to

Jk(xk) = min
uk

L(xk, uk) + Jk+1(f(xk, uk))

xkr xk+1r
-

k+1k
p
N
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Dynamic Programming Recursion

Iterate backwards, starting from JN (x) := E(x) for all x ∈ Rnx

for k = N − 1, N − 2, . . .

Jk(x) = min
u
L(x, u) + Jk+1(f(x, u))

@
@@R

6

JN (·)

xN

@
@@R

6

JN−1(·)

xN−1

· · ·

@
@@R

6

J0(·)

x0
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The optimal feedback control policy

The optimal feedback control law π∗k at time k is defined by

π∗k(x) := arg min
u

L(x, u) + Jk+1(f(x, u))

These feedback laws together define the optimal feedback control policy (π∗0 , . . . , π
∗
N−1)

which tells us for any state x at any time index k what would be the optimal control action.
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How to obtain optimal trajectories ?

The optimal policy (π∗0 , . . . , π
∗
N−1) allows us to

solve the original optimal control problem.

Starting with x∗0 := x̄0, we simulate the closed
loop system for k = 0, 1, . . . , N − 1:

u∗k := π∗k(x∗k)

x∗k+1 := f(x∗k, u
∗
k)

yielding the optimal trajectories x∗ = (x∗0, . . . , x
∗
N )

and u∗ = (u∗0, . . . , u
∗
N ) that solve problem (2).

Optimal Control Problem

min
x,u

N−1∑
k=0

L(xk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = f(xk, uk),

k = 0, . . . , N−1

(2)

Note: MPC applies only π∗0(s̄0). The MPC law can be generated in one of three ways:
(a) via dynamic programming,
(b) via online solution of (2) in classical MPC, or
(c) via offline solution of (2) based on parametric programming in explicit MPC.
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Robust Dynamic Programming

Dynamic Programming can straightforwardly be extended to games like chess, or to closed loop
robust min-max optimal control problems, which are not easily treatable with other robust
optimization methods.

Here, in each time step, we first choose the controls uk, but then an adverse player choses
disturbances wk, and both influence the system dynamics xk+1 = f(xk, uk, wk).

Robust DP Recursion

Iterate backwards, from k = N − 1 down to k = 0, using the robust Bellman equation

Jk(x) = min
u

max
w∈W

( L(x, u) + Jk+1(f(x, u, w)) )

starting with terminal cost
JN (x) = E(x)

The only additional effort are the evaluations of the worst-cases in each DP step.
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(Hamilton-Jacobi-Bellman (HJB) Equation)

I DP with infinitesimal steps leads to Hamilton-Jacobi-Bellman (HJB) Equation:

−∂J
∂t

(x, t) = min
u

(
L(x, u) +

∂J

∂x
(x, t)f(x, u)

)
s.t. h(x, u) ≥ 0.

I This is a partial differential equation (PDE) for t ∈ [0, T ] with terminal condition

J(x, T ) = E(x).

I NOTE: Optimal controls for state x at time t are obtained from

u∗(x, t) = arg min
u

(
L(x, u) +

∂J

∂x
(x, t)f(x, u)

)
s.t. h(x, u) ≥ 0.
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Dynamic Programming: Pros and Cons

I “Dynamic Programming” applies to discrete time, “HJB” to continuous time systems.

I Pros and Cons

+ searches whole state space, finds global optimum.
+ optimal feedback controls precomputed.
+ analytic solution sometimes possible (linear systems with quadratic cost)
+ can easily be extended to robust min-max or stochastic optimal control
- but: in general intractable, because need to tabulate value function in state space:

Bellman’s “curse of dimensionality”

I possible remedy: Approximate J e.g. in framework of Neuro-Dynamic Programming
[Bertsekas 1996], closely related to Reinforcement Learning [Barton and Sutto, 2018]
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(Indirect Methods)

For simplicity, regard only problem without inequality constraints:

terminal

cost E(x(T ))

6

initial value
x0 r states x(t)

controls u(t)

-p
0 t

p
T

minimize
x(·),u(·)

∫ T

0

L(x(t), u(t)) dt + E (x(T ))

subject to

x(0)− x0 = 0, (fixed initial value)

ẋ(t)−f(x(t), u(t)) = 0, t ∈ [0, T ], (ODE model)
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(Pontryagin’s Minimum Principle)

OBSERVATION: In HJB, optimal controls

u∗(t) = arg min
u

(
L(x, u) +

∂J

∂x
(x, t)f(x, u)

)
depend only on derivative ∂J

∂x (x, t), not on J itself!

IDEA: Introduce adjoint variables

λ(t) =̂
∂J

∂x
(x(t), t)T ∈ Rnx

and get controls from Pontryagin’s Minimum Principle

u∗(t, x, λ) = arg min
u

 L(x, u) + λT f(x, u)︸ ︷︷ ︸
Hamiltonian=:H(x,u,λ)


QUESTION: How to obtain λ(t)?
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(Adjoint Differential Equation)

I Differentiate HJB Equation

−∂J
∂t

(x, t) = min
u
H(x, u,

∂J

∂x
(x, t)T )

with respect to x and obtain:

−λ̇T =
∂

∂x
(H(x(t), u∗(t, x, λ), λ(t))) .

I Likewise, differentiate J(x, T ) = E(x) and obtain terminal condition

λ(T )T =
∂E

∂x
(x(T )).
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How to obtain explicit expression for controls?

I In simplest case,
u∗(t) = arg min

u
H(x(t), u, λ(t))

is defined by
∂H

∂u
(x(t), u∗(t), λ(t)) = 0

(Calculus of Variations, Euler-Lagrange).

I In presence of path constraints, expression for u∗(t) changes whenever active constraints
change. This leads to state dependent switches.

I If minimum of Hamiltonian locally not unique, “singular arcs” occur. Treatment needs
higher order derivatives of H.
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(Necessary Optimality Conditions)

Summarize optimality conditions as boundary value problem:

x(0) = x0, initial value

ẋ(t) = f(x(t), u∗(t)), t ∈ [0, T ], ODE model

−λ̇(t) =
∂H

∂x
(x(t), u∗(t), λ(t))T , t ∈ [0, T ], adjoint equations

u∗(t) = arg min
u
H(x(t), u, λ(t)), t ∈ [0, T ], minimum principle

λ(T ) =
∂E

∂x
(x(T ))T . adjoint final value.

Solve with so called

I gradient methods,

I shooting methods, or

I collocation.
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(Indirect Methods / Pontryagin: Pros and Cons)

I “first optimize, then discretize”

I Pros and Cons

+ boundary value problem with only 2× nx ODE
+ can treat large scale systems
- only necessary conditions for local optimality
- need explicit expression for u∗(t), singular arcs difficult to treat
- ODE strongly nonlinear and unstable
- inequalities lead to ODE with state dependent switches

Possible remedy: interior point method in function space e.g. Weiser and Deuflhard, Bonnans
and Laurent-Varin

I used for optimal control e.g. in satellite orbit planning (at French space agency)
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Direct Methods

I “first discretize, then optimize”

I transcribe infinite problem into finite Nonlinear Programming Problem (NLP)
I Pros and Cons:

+ can use state-of-the-art methods for NLP solution
+ can treat inequality constraints and multipoint constraints much easier
- obtains only suboptimal / approximate solution

I nowadays most commonly used methods due to their easy applicability and robustness
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Direct Methods Overview

We treat three direct methods:

I Direct Single Shooting (sequential simulation and optimization)

I Direct Collocation (fully simultaneous simulation and optimization)

I Direct Multiple Shooting (simultaneous simulation and optimization)
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Direct Single Shooting [Hicks1971,Sargent1978]

Discretize controls u(t) on fixed grid 0 = t0 < t1 < . . . < tN = T, regard states x(t) on [0, T ]
as dependent variables.

6

x0 r states x(t; q)

discretized controls u(t; q)

q0

q1

qN−1 -p
0 t

p
T

Use numerical integration to obtain state as function x(t; q) of finitely many control
parameters q = (q0, q1, . . . , qN−1) ∈ RN ·nu
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NLP in Direct Single Shooting

After control discretization and numerical ODE solution, obtain NLP:

NLP resulting from Direct Single Shooting

minimize
q∈RN·nu

∫ T

0

L(x(t; q), u(t; q)) dt+ E (x(T ; q))

subject to

h(x(ti; q), u(ti; q)) ≥ 0,
i = 0, . . . , N,

(discretized path constraints)

r (x(T ; q)) ≥ 0. (terminal constraints)

Solve with nonlinear programming solver, e.g. Sequential Quadratic Programming (SQP)
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Solution by Standard SQP

Summarize problem as minq F (q) s.t. H(q) ≥ 0

Solve e.g. by Sequential Quadratic Programming (SQP), starting with guess q0 for controls.
k := 0

1. Evaluate F (qk), H(qk) by ODE solution, and derivatives

2. Compute correction ∆qk by solution of QP:

min∆q∇F (qk)T∆q + 1
2∆qTAk∆q s.t. H(qk) +∇H(qk)T∆q ≥ 0

3. Perform step qk+1 = qk + αk∆qk with step length αk ∈ (0, 1] determined by line search
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ODE Sensitivities

How to compute the sensitivity
∂x(t; q)

∂q
of a numerical ODE solution x(t; q) with respect

to the controls q?

many ways, for example:

I External Numerical Differentiation (END)

I Variational Differential Equations

I Automatic Differentiation (AD) of integration code

I Internal Numerical Differentiation (IND)

cf. [Rien Quirynen, Numerical simulation methods for embedded optimization, PhD thesis, KU Leuven

and Freiburg University, 2017]
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Numerical Test Problem

minimize
x(·),u(·)

∫ 3

0

x(t)2 + u(t)2 dt

subject to

x(0) = x0, (initial value)

ẋ =(1 + x)x+ u, t ∈ [0, 3], (ODE model)
1− x(t)
1 + x(t)
1− u(t)
1 + u(t)

 ≥


0
0
0
0

 , t ∈ [0, 3], (bounds)

x(3) = 0. (zero terminal constraint)

Remark: Uncontrollable growth for (1 + x0)x0 − 1 ≥ 0⇔ x0 ≥ 0.618.
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Single Shooting Optimization for x0 = 0.05

I choose N = 30 equal control intervals

I initialize with steady state controls u(t) ≡ 0

I initial value x0 = 0.05 is the maximum possible for the problem to be solved by single
shooting, because the initial trajectory explodes otherwise
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Single Shooting: Initialization
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Single Shooting: First Iteration
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Single Shooting: 2nd Iteration

Numerical Optimal Control M. Diehl 31/53



Single Shooting: 3rd Iteration
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Single Shooting: 4th Iteration
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Single Shooting: 5th Iteration
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Single Shooting: 6th Iteration
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Single Shooting: 7th Iteration and Solution

Numerical Optimal Control M. Diehl 36/53



Direct Single Shooting: Pros and Cons

I sequential simulation and optimization.

+ can use state-of-the-art ODE/DAE solvers

+ few degrees of freedom even for large ODE/DAE systems

+ active set changes easily treated

+ need only initial guess for controls q

- cannot use knowledge of x in initialization (e.g. in tracking problems)

- ODE solution x(t; q) can depend very nonlinearly on q

- unstable systems difficult to treat

I often used in self-made optimal control codes in engineering applications
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Direct Collocation (Sketch) [Tsang1975]

I Discretize controls and states on fine grid with node values si ≈ x(ti).

I Replace infinite ODE
0 = ẋ(t)− f(x(t), u(t)), t ∈ [0, T ]

by local intermediate integration variables zi and finitely many equality constraints

ci(si, qi, zi, si+1) = 0, i = 0, . . . , N − 1,

e.g. ci(si, qi, si+1) :=
si+1 − si
ti+1 − ti

− f
(
si + si+1

2
, qi

)
I Approximate also integrals, e.g.∫ ti+1

ti

L(x(t), u(t))dt ≈ li(si, qi, si+1) := L

(
si + si+1

2
, qi

)
(ti+1 − ti)
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NLP in Direct Collocation

After discretization, obtain large scale, but sparse NLP:

Sparse NLP resulting from direct collocation

minimize
s,q,z

N−1∑
i=0

li(si, qi, zi, si+1) + E (sN )

subject to

s0 − x0 = 0, (fixed initial value)

ci(si, qi, zi, si+1) = 0, i = 0, . . . , N − 1, (discretized ODE model)

h(si, qi, zi) ≥ 0, i = 0, . . . , N − 1, (discretized path constraints)

r (sN ) ≥ 0. (terminal constraints)

solve NLP with sparsity exploiting SQP or nonlinear interior point method (e.g. ipopt)
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What is a sparse NLP?

General NLP:

min
w

F (w)

s.t. G(w) = 0,

H(w) ≥ 0.

is called sparse if the Jacobians (derivative matrices)

∇wG> =
∂G

∂w
=

(
∂G

∂wj

)
ij

and ∇wH>

contain many zero elements.

In SQP and IP methods, this makes the linear systems much cheaper to build and to solve
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Direct Collocation: Pros and Cons

I simultaneous simulation and optimization.

+ large scale, but very sparse NLP

+ can use knowledge of x in initialization

+ can treat unstable systems well

+ robust handling of path and terminal constraints

- adaptivity needs new grid, changes NLP dimensions

I successfully used for practical optimal control by many experienced researchers
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Direct Multiple Shooting [Bock 1984]

I Discretize controls piecewise on a coarse grid

u(t) = qi for t ∈ [ti, ti+1]

I Solve ODE on each interval [ti, ti+1] numerically, starting with artificial initial value si:

ẋi(t; si, qi) = f(xi(t; si, qi), qi), t ∈ [ti, ti+1],

xi(ti; si, qi) = si.

Obtain trajectory pieces xi(t; si, qi).

I Also numerically compute integrals

li(si, qi) :=

∫ ti+1

ti

L(xi(ti; si, qi), qi)dt
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Sketch of Direct Multiple Shooting

r r r r r
6

s0 s1

si si+1

xi(ti+1; si, qi) 6= si+1

@
@R r r r r r

6

qix0 fr
-q

t0

q0 q
t1

q q
ti

q
ti+1

q q
tN−1

r sN−1

q
tN

r sN
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NLP in Direct Multiple Shooting

q q q q q q q q q q6

bq
-p p p p p p p

q
p
q

minimize
s,q

N−1∑
i=0

li(si, qi) + E (sN )

subject to

s0 − x0 = 0, (initial value)

si+1 − xi(ti+1; si, qi) = 0, i = 0, . . . , N − 1, (continuity)

h(si, qi) ≥ 0, i = 0, . . . , N, (discretized path constraints)

r (sN ) ≥ 0. (terminal constraints)
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Multiple Shooting NLP = Discrete Time Optimal Control Problem

Discrete Time Optimal Control Problem

min
x,u

N−1∑
k=0

L(xk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = f(xk, uk)

h(xk, uk) ≥ 0, k = 0, . . . , N−1

r (xN ) ≥ 0

summarize all variables as w := (s0, q0, s1, q1, . . . , sN )

Nonlinear Program

min
w

F (w)

s.t. G(w) = 0

H(w) ≥ 0
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Structured Block-Sparse NLP

Nonlinear Program

min
w

F (w)

s.t. G(w) = 0

H(w) ≥ 0

I Jacobian ∇G(w)> contains linearized dynamic model equations

I Jacobians and Hessian of NLP are block sparse, can be exploited in numerical solution

I NLPs of single and direct multiple shooting are equivalent (same solutions in control
space)

I but ”lifting” of the state variables of multiple shooting reduces the nonlinearity, as
observed by many practitioners and investigated theoretically by [Albersmeyer and Diehl,
The Lifted Newton Method and Its Application to Optimization, SIAM J. Opt., 2010]
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Test Example: Initialization with u(t) ≡ 0
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Multiple Shooting: First Iteration
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Multiple Shooting: 2nd Iteration

Numerical Optimal Control M. Diehl 49/53



Multiple Shooting: 3rd Iteration and Solution
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Direct Multiple Shooting: Pros and Cons

I simultaneous simulation and optimization.

+ uses adaptive ODE/DAE solvers

+ but NLP has fixed dimensions

+ can use knowledge of x in initialization (important in online context)

+ can treat unstable systems well

+ robust handling of path and terminal constraints

+ easy to parallelize

- not as sparse as collocation

I used for practical optimal control in many codes e.g MUSCOD (Bock), HQP
(Franke), MUSCOD-II (Leineweber et al.), ACADO Toolkit (Houska, Ferreau et
al.), acados (Verschueren, Frey, Frison, Kouzoupis, Quirynen et al.), ...
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Conclusions: Optimal Control Family Tree

(((((((((((((((((((((
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�
�
�
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Dynamic Programming
/ Hamilton-Jacobi-
Bellman Equation:

Tabulation in
State Space

Indirect Methods,
Pontryagin:

Solve Boundary Value
Problem

Direct Methods:
Transform into

Nonlinear Program
(NLP)

((((((((((((((((((((((

�����������

�
�
�
�

Direct Single Shooting:
Only discretized
controls in NLP

(sequential)

Direct Collocation:
Discretized controls
and states in NLP

(fully simultaneous)

Direct Multiple Shooting:
Controls and node start

values in NLP
(simultaneous)
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