

Contactless current sensing with position detection using model-based nonlinear optimization

Lukas Klar, Dr. Stefan Albrecht, Prof. Dr. Moritz Diehl

> **TDK-Micronas GmbH** A TDK Group Company

Magnetic Sensors Business Group • Application Engineering Freiburg, Germany January 30, 2018

State of the art – Contactless current sensing

Enclosure of conductor by a core

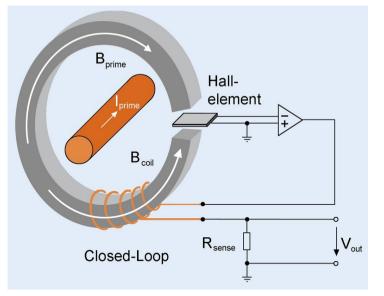
- Big size
- High cost of core
- Bandwidth limitation
- Remanence
- Complicated mounting

Integrated conductor on leadframe

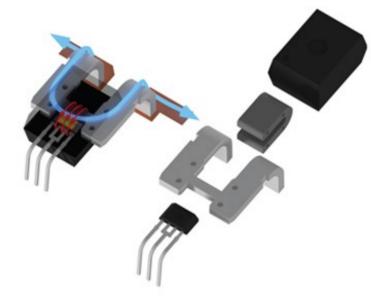
- Dual molding
- High cost of conductor
- Complex assembly process

Coreless placement

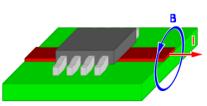
- Low stray field immunity
- Precise placement or end of line calibration



www.elektronikpraxis.vogel.de/sensorik/ articles/299736/index2.html



www.allegromicro.com/en/Products/Current-Sensor-ICs/Fifty-To-Two-Hundred-Amp-Integrated-Conductor-Sensor-ICs.aspx



de.wikipedia.org/wiki/Stromsensor

An innovative idea

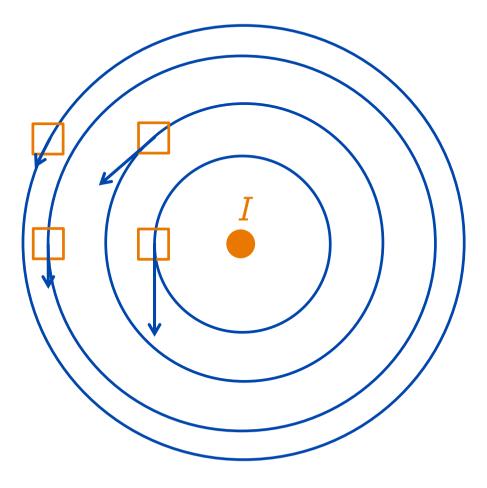
Requirements

- Non-contact sensor → free of potential
- No exact mounting → position tolerant
- No current carrying leadframe → low cost
- No enclosure → easy to mount

Implementation

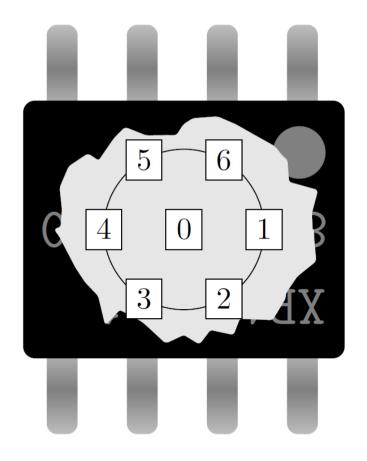
- Measurement of the magnetic field at multiple locations in all three spatial dimensions
- Modelling of the expected magnetic field based on used setup e.g. straight, round conductor, distance between sensors,...
- Estimation of the current by fitting the model to the measurement data using non-linear optimization

$$\underset{\theta}{\text{minimize}} \quad f(\theta) = \frac{1}{2} ||m(\theta) - y||_2^2$$



The Hardware

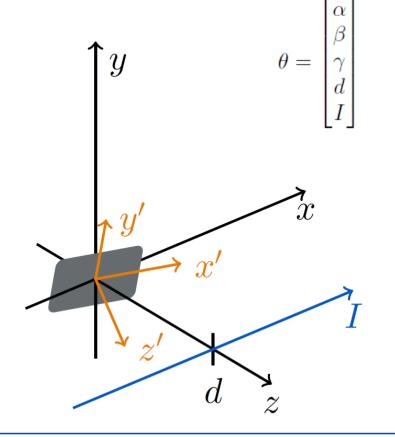
Sensor chip with seven 3D Hall pixel cells \rightarrow 21 magnetic field values measured at once



The Model

Parameter space consists of 5 variables

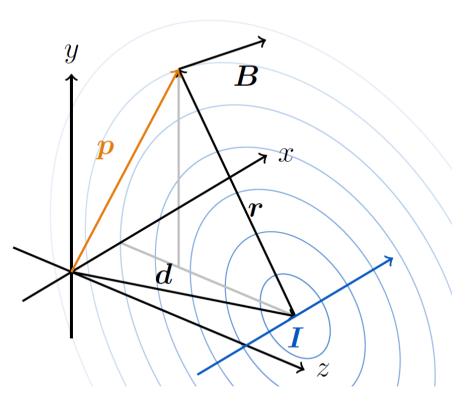
- 4 Spatial degrees of freedom
 - \neg Distance between sensor and conductor *d*
 - ¬ Rotation of sensor (3 axis) α , β and γ
- Current flow in the conductor



Magnetic field model according to Biot-Savart:

- Infinitely long
- Straight conductors
- Round cross-section

$$\mathbf{B} = \frac{\mu_0 \mu_r}{2\pi r^2} \mathbf{I} \times \mathbf{r}$$



Model – Equation

Position of *i*-th sensing elements after rotation:

$$p_{y,i} = \cos(\beta)\sin(\gamma)p_{0,x,i} + \cos(\alpha)\cos(\gamma)p_{0,y,i}$$
$$+ (\sin(\beta)\sin(\gamma) - \sin(\alpha)\cos(\gamma))p_{0,z,i},$$
$$p_{z,i} = -\sin(\beta)p_{0,x,i} + \sin(\alpha)\cos(\beta)p_{0,y,i}$$
$$+ \cos(\alpha)\cos(\beta)p_{0,z,i},$$

Sensing direction of *i*-th elements after rotation:

$$e_{y,i} = \cos(\beta)\sin(\gamma)e_{0,x,i} + \cos(\alpha)\cos(\gamma)e_{0,y,i}$$
$$+ (\sin(\beta)\sin(\gamma) - \sin(\alpha)\cos(\gamma))e_{0,z,i},$$
$$e_{z,i} = -\sin(\beta)e_{0,x,i} + \sin(\alpha)\cos(\beta)e_{0,y,i}$$
$$+ \cos(\alpha)\cos(\beta)e_{0,z,i}.$$

Magnetic flux measured at the *i*-th sensing element:

$$y_i = m_i(\theta) + \epsilon_i = \frac{\mu_0 I(p_{y,i}e_{z,i} + (d - p_{z,i})e_{y,i})}{2\pi (p_{y,i}^2 + (d - p_{z,i})^2)} + \epsilon_i$$

Complete system model:

$$m(\theta) = \begin{bmatrix} m_1(\theta) \\ \vdots \\ m_{21}(\theta) \end{bmatrix}$$

Model – Measurement noise

Sensor noise is dependent on the implemented sensing direction:

Direction	σ-noise
X and Y	3.0 µT
Z	1.2 µT

The residual is the mismatch between model and measurement scaled by the covariance matrix

$$R(\theta) = \Sigma_{\epsilon}^{-\frac{1}{2}} \left(m(\theta) - y \right)$$

Resulting optimization problem:

$$\underset{\theta}{\text{minimize}} \quad f(\theta) = \frac{1}{2} ||R(\theta)||_2^2$$

Nonlinear parameter estimation – Overview

Optimization problem:

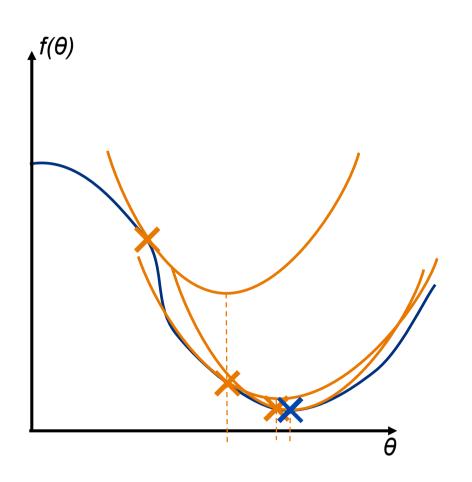
Which parameters fit best to the measured values?

→ Where is the minimum of the sum of squares of the residual?

minimize
$$f(\theta) = \frac{1}{2} ||R(\theta)||_2^2$$

Gauss-Newton Algorithm:

- 1. Start at initial value θ_{101}
- 2. Linearize the residual at the given point
- 3. Solve the linear optimization problem with the least squares method
- ► 4. Repeat from step 2 with solution as new linearization point



Nonlinear parameter estimation – Linearization

First order Taylor series at $\theta_{[k]}$:

$$R_{[k]}(\theta) = R(\theta_{[k]}) + \frac{\partial R}{\partial \theta}(\theta_{[k]})(\theta - \theta_{[k]})$$

Jacobian matrix:

$$J_{[k]} = \frac{\partial R}{\partial \theta}(\theta_{[k]}) \qquad J_{[k]} = \begin{bmatrix} \frac{\partial R}{\partial \theta_1}(\theta_{[k]}) & \cdots & \frac{\partial R}{\partial \theta_5}(\theta_{[k]}) \end{bmatrix}$$

Imaginary step derivation:

$$\frac{\partial R}{\partial \theta_n}(\theta_{[k]}) = \frac{\operatorname{Im}(R(\theta_{[k]} + i \cdot \varepsilon \cdot e_n))}{\varepsilon}$$

Nonlinear parameter estimation – LLS

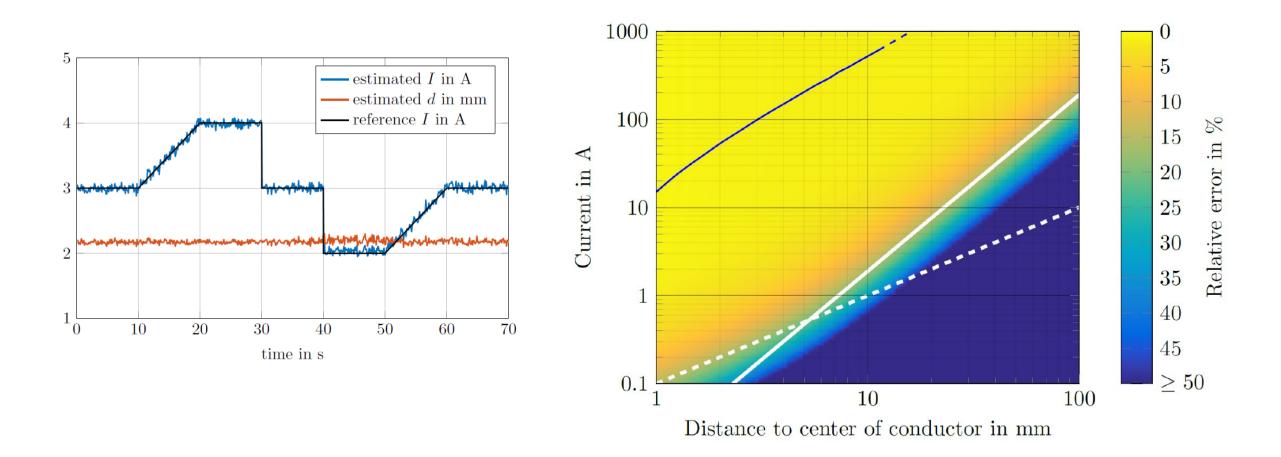
Linear least squares problem:

$$\underset{\theta}{\text{minimize}} \quad f_{[k]}(\theta) = \frac{1}{2} ||R_{[k]}(\theta)||_2^2$$

Analytical solution with the general Moore-Penrose pseudo-inverse:

 $\theta_{[k+1]} = \theta_{[k]} - J^+_{[k]} \cdot R(\theta_{[k]})$

Experimental results



www.micronas.com