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Uncertain optimal control problem statement

Uncertain optimal control problem in discrete time

min
x, u

N−1∑
k=0

`(xk, uk) + Vf(xN )

s.t. x0 = x̄0,

xk+1 = f(xk, uk, wk), k = 0, . . . , N − 1,

0 ≥ h(xk, uk), k = 0, . . . , N − 1,

0 ≥ r(xN ).

All difficulty of robust model predictive control comes from the fact that the disturbance
trajectory (w0, . . . , wN−1) is unknown. If it were known in advance, one could simply solve a
nominal MPC problem with time varying dynamics.

Robust Dynamic Optimization M. Diehl 2/46



Three challenges of robust dynamic optimization

When formulating and solving the robust dynamic optimization problems, one needs to address
three major challenges:

I Challenge 1: Robust constraint satisfaction. How can the state uncertainty be
approximated and propagated over the prediction horizon in order to guarantee robust
constraint satisfaction?

I Challenge 2: Feedback predictions. How can feedback control policies be approximated
and incorporated into the robust MPC optimization problem in order to reduce its
conservatism?

I Challenge 3: Dual control. How can the optimality loss due to imperfect state
estimation be computed and how can the uncertainty be reduced optimally, by proper
choice of controls? (explore-exploit-tradeoff)

In this course, we will only address Challenges 1 and 2 (we assume perfect state estimates)
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Challenge 1: Robust constraint satisfaction

The nominal predicted trajectory cuts the corner tightly, in Nominal MPC.
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Challenge 1: Robust constraint satisfaction

Predicting an uncertainty set (”tube”), we see that the car would often crash.
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Challenge 1: Robust constraint satisfaction

Due to uncertainty, the center of the tube needs to keep a distance (”backoff”) from the corner.

Open-Loop Robust MPC addresses Challenge 1 (Robust Constraint Satisfaction).
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Challenge 1: Robust constraint satisfaction

We will use two perspectives to derive a robust version of the uncertain OCP. These two
perspectives are not necessarily in disagreement and can lead to identical formulations.

I Perspective 1: Robust Optimization. Bring into high-level standard form and use
results from Robust Optimization lecture

min
u

max
w∈W

F0(u,w)

s.t. max
w∈W

Fi(u,w) ≤ 0, i = 1, . . . , nF .

I Perspective 2: OCP with set-valued trajectories. Given initial state x̄0, a control
trajectory u = (u0, . . . , uN−1), and the disturbance set W , what is the set Xk of possible
values for xk?

X0 = {x0},
Xk+1 = F(Xk, uk) := {f(x, uk, w) | x ∈ Xk, w ∈ W̄}
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Perspective 1: Robust Optimization

Eliminate state trajectory - as in single shooting - via a recursion started at x̃0(u,w) := x̄0 and

looping through the state transitions x̃k+1(u,w) := f(x̃k(u,w), uk, wk) for k = 0, . . . , N − 1:

Min-max robust optimal control problem (as in single shooting)

min
u

max
w∈W

N−1∑
k=0

`(x̃k(u,w), uk) + Vf(x̃N (u,w))

s.t. max
w∈W

h(x̃k(u,w), uk) ≤ 0, k = 0, . . . , N − 1

max
w∈W

r(x̃N (u,w)) ≤ 0

Identify the cost with F0(u,w) and the constraints componentwise with Fi(u,w):

min
u

max
w∈W

F0(u,w) s.t. max
w∈W

Fi(u,w) ≤ 0, i = 1, . . . , nF

Thus, all methods from the Robust Optimization lecture apply. We will look at their specific
instantiation later.
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Perspective 2: OCP with set-valued trajectories

I Set dynamics: F(Xk, uk) = {f(xk, uk, wk) | xk ∈ Xk, wk ∈ W̄}
I Assign costs L(Xk, u) to set Xk based on `(xk, uk), e.g., worst-case or average.

Set-based robust OCP

min
X, κ

N−1∑
k=0

L(Xk, uk) + Lf(XN )

s.t. X0 = {x̄0},
Xk+1 = F(Xk, uk), k = 0, . . . , N − 1,

0 ≥ h(xk, uk), ∀xk ∈ Xk, k = 0, . . . , N − 1,

0 ≥ r(xN ), ∀xN ∈ XN ,
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Challenge 2: Feedback prediction

The nominal predicted trajectory cuts the corner tightly, in Nominal MPC.
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Challenge 2: Feedback prediction

Predicting an uncertainty set (”tube”), we see that the car would often crash.
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Challenge 2: Feedback prediction

Due to uncertainty, the center of the tube needs to keep a distance (”backoff”) from the corner.

Open-Loop Robust MPC addresses Challenge 1 (Robust Constraint Satisfaction).
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Challenge 2: Feedback prediction

But: we know that in the future we will apply feedback.

Challenge 2 - Feedback prediction - needs to be addressed.

Robust Dynamic Optimization M. Diehl 8/46



Challenge 2: Feedback prediction

Considering future feedback allows for a more realistic, less conservative prediction.

Closed-Loop Robust MPC addresses Challenge 2.
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Exact Feedback Prediction via Robust Dynamic Programming (RDP)

Exact feedback prediction requires us to optimize not in the space of control sequences
(u0, . . . , uN−1), but in the space of feedback policies κ0(·), . . . , κN−1(·) with

κk : Rnx → Rnu , xk 7→ uk = κk(x)

This is an infinite dimensional function space, making it an infinite optimization problem that is
impossible to solve numerically. In practice, one often parameterizes the feedback law, for
example in the form of linear state feedback policies

uk = Kkxk + vk

where the minimization variables are Kk ∈ Rnu×nx and vk ∈ Rnu .

Conceptually, the problem can exactly be solved via Robust Dynamic Programming (RDP),
which we present next. It delivers important insights w.r.t. to solution structure, e.g. convexity.
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Robust Dynamic Programming Prelude: Extended Cost Values

Can assign infinite cost to infeasible points, using extended reals R̄ := R ∪ {∞,−∞}

Constrained Optimal Control Problem

min
x,u

N−1∑
k=0

`(xk, uk) + Vf(sN )

s.t. x0 = x̄0

xk+1 = f(xk, uk, wk)

0 ≥ h(xk, uk), k = 0, . . . , N−1

0 ≥ r(xN )

Equivalent Unconstrained Formulation

min
x,u

N−1∑
k=0

¯̀(xk, uk) + V̄f(xN )

s.t. x0 = x̄0

xk+1 = f(xk, uk, wk), k = 0, . . . , N−1

with

¯̀(x, u) =

{
`(x, u) if h(x, u) ≤ 0
∞ else

}
and V̄f(x) =

{
Vf(x) if r(x) ≤ 0
∞ else

}
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Robust Dynamic Programming Prelude: Extended Cost Values
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Robust Dynamic Programming (RDP)

Assume uncertainty is restricted to set wk ∈ W̄ in each time step.

Robust dynamic programming proceeds as follows.

Robust Dynamic Programming (RDP) Recursion

Iterate backwards, from k = N − 1 down to k = 0, using the robust Bellman equation

Jk(xk) = min
uk

(
max
wk∈W̄

`(xk, uk) + Jk+1(f(xk, uk, wk))

)
starting with terminal cost

JN (x) = Vf(x)
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Monotonicity of Robust Dynamic Programming

The “cost-to-go” Jk is often also called the “value function”.

The robust dynamic programming operator T mapping between value functions is defined by

T [J ](x) := min
u

max
w∈W̄

`(x, u) + J(f(x, u, w))

Dynamic programming recursion now compactly written as Jk = T [Jk+1].

We write J ≥ J ′ if J(x) ≥ J ′(x) for all x ∈ Rnx .

One can prove that
J ≥ J ′ ⇒ T [J ] ≥ T [J ′]

This is called “monotonicity” of dynamic programming. It holds also for deterministic or
stochastic dynamic programming. It can e.g. be used in existence proofs for solutions of the
stationary Bellman equation, or in stability proofs for MPC (JN ≥ JN−1 ⇒ J1 ≥ J0).
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Convex Robust Dynamic Programming

Certain RDP operators T preserve convexity of the value function J : Rnx → R̄:

Theorem [D.: Formulation of Closed-Loop Min–Max MPC as a QCQP. IEEE TAC 2007]

If

I system is affine f(x, u, w) = A(w)x+B(w)u+ c(w) and

I stage cost `(x, u) convex in (x, u)

then the robust DP operator T preserves convexity of J , i.e.

J convex ⇒ T [J ] convex

Note: no assumptions on disturbance set W̄ or on how w enters cost and dynamics.
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Proof of Convexity Preservation

The function
`(x, u) + J( A(w)x+B(w)u+ c(w) )

is convex in (x, u) for any fixed w, as concatenation of an affine function inside a convex one.

Because the maximum over convex functions (indexed by w) preserves convexity, the function

Q(x, u) := max
w∈W̄

`(x, u) + J( A(w)x+B(w)u+ c(w) )

is also convex in (x, u).
Finally, the minimization of a convex function over one of its arguments preserves convexity,
i.e. the resulting value function T [J ] defined by

T [J ](x) = min
u
Q(x, u)

is convex.
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Why is convexity of the value function important?

where the matrices and and the vector are uncertain but contained in the convex hull

(6)

and we identify each with the corresponding matrix to keep notation simple. We also
assume that the stage- and terminal cost functions are piecewise linear,

and

with vectors , , . In particular, and are convex, as depicted in the
following sketch of .

Linear constraints like bounds on states and controls can also be represented by piecewise linear functions

and

again with vectors , and . The corresponding feasible sets are convex
polyhedra. We will in the sequel make the assumption that there is an such that the set

is nonempty and bounded. In particular, this implies that

(7)

We show in the next section that the remain piecewise linear under the recursion (3), and then that the
same holds for the in the constrained robust Bellman equation (4).

2 A New Method for Robust Dynamic Programming
In the remainder of this paper we will make strong use of the following useful observation.

Lemma 2.1 Assume that is a bounded polytope as in (6) and that is piece-

wise linear. Then for all

(8)

where the are the vertices of .

3

I value function J(x) can be represented (or approximated) as the maximum of affine
functions with vectors ai ∈ R1+nx with indices i in some (finite or infinite) set S

J(x) = max
i∈S

a>i

[
1
x

]
I computation of feedback law arg minuQ(x, u) is convex and can be solved reliably

I convexity of value function allows us to conclude, in case of polytopic uncertainty, that
worst case is assumed on boundary of the polytope, making scenario-tree formulation
possible [D.: Formulation of Closed-Loop Min–Max MPC as a QCQP. IEEE TAC 2007]
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Scenario Tree for Finite Disturbances
Assumption: m possible disturbance values in each time step W̄ = {w1, . . . , wm}

I in each stage, m disturbance values {w1, . . . , wm}
I mk state values Xk = {x1

k, . . . , x
mk

k } at stage k

I one control uik for each state xik encodes feedback, and
”epigraph slack control” vik collects worst-case objective

Exact Scenario Tree Formulation

min
x, u, v

`(x1
0, u

1
0) + v1

0

s.t. x1
0 = x̄0,

xik+1 = f(x
di/mke
k , u

di/mke
k , w i]m1 ),

v
di/mke
k ≥ `(xik+1, u

i
k+1) + vik+1, k = 0, . . . , N − 1,

0 ≥ h(x
di/mke
k , u

di/mke
k ), i = 1, . . . ,mk+1,

0 ≥ r(xjN ), vjN ≥ Vf(x
j
N ), j = 1, . . . ,mN

d·e: ceiling function, i]m1 wraps i to {1, . . . ,m}.

x10, u
1
0

x11, u
1
1

x21, u
2
1

x12

x22

x32

x42

w1

w2

w1

w2

w1

w2

For each state and control
pair, simulate dynamics for
every possible disturbance
value.
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Scenario Tree for Polytopic Systems with Convex Costs and Constraints
Extension of scenario-tree formulation to infinite polytopic disturbance sets, using convexity of RDP cost-to-go

Assume

I polytopic uncertainty W̄ = conv{w1, . . . , wm} ⊂ Rnw

I affine dynamics xk+1 = A(wk)xk +B(wk)uk + c(wk)

I affine dependendence of A(w), B(w), c(w) on w ∈ Rnw

I convexity of functions `, h, Vf , r

then worst-case is taken in vertices of W̄ and scenario-tree suffices

Exact Convex Scenario Tree for Polytopic Systems [D., IEEE TAC 2007]

min
x, u, v

`(x1
0, u

1
0) + v1

0

s.t. x1
0 = x̄0,

xik+1 = A
(
w i]m1

)
x
di/mke
k +B

(
w i]m1

)
u
di/mke
k + c

(
w i]m1

)
,

v
di/mke
k ≥ `(xik+1, u

i
k+1) + vik+1, k = 0, . . . , N − 1,

0 ≥ h(x
di/mke
k , u

di/mke
k ), i = 1, . . . ,mk+1,

0 ≥ r(xjN ), vjN ≥ Vf(x
j
N ), j = 1, . . . ,mN

x10, u
1
0

x11, u
1
1

x21, u
2
1

x12

x22

x32

x42

w1

w2

w1

w2

w1

w2

d·e: ceiling function, i]m1
wraps i to {1, . . . ,m}.
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Dual norm formulation for systems that are affine in disturbances

Regard disturbance trajectories w = (w̄0, . . . , w̄N−1) ∈ RNnw̄ in norm ball
W = {w ∈ Rnw | ‖w‖ ≤ 1} for any norm ‖ · ‖, with nw = Nnw̄.1

Again define ”single shooting” state trajectory x̃k(u,w) at time k as function of (u,w)
trajectories, where u = (ū0, . . . , ūN−1) ∈ Rnu , and nu = Nnū.

For simplicity, omit terminal constraint and uncertainty in objective.

Open loop robust optimal control problem

min
u

F0(u)

s.t. max
w∈W

hj(x̃k(u,w), ūk)︸ ︷︷ ︸
=:Fk,j(u,w)

≤ 0, k = 0, . . . , N − 1, j = 1, . . . , nh,

If functions Fk,j(u,w) are affine in uncertainty w, dual norm formulation is applicable.

1A mixed `∞-`p-norm covers the case of independent, stage-wise p-norm bounded uncertainties,
W = W̄× . . .× W̄ with `p-norm balls W̄ = {w̄ ∈ Rnw̄ | ‖w̄‖p ≤ 1}.
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Dual norm formulation for systems that are affine in disturbances

For constraints affine in the uncertainty trajectory we obtain (using ∇wf(w) = ∂f
∂w (w)>)

max
w∈W

Fk,j(u,w) = hj(x̃k(u, 0), ūk) + ‖∇wx̃k(u,w)∇xhj(x̃k(u, 0), ūk)‖∗

For uncertainty affine systems xk+1 = a(uk) +A(uk)xk + Γ(uk)wk

the derivative of state xk w.r.t. disturbance wm is given by

Gk,m(u) :=
∂x̃k
∂wm

(u,w) = A(uk−1) · · ·A(um+1)Γ(um)

so that we obtain

max
w∈W

Fk,j(u,w) = hj(x̃k(u, 0), ūk) +

∥∥∥∥∥∥∥∥∥∥∥∥


Gk,0(u)>

...
Gk,k−1(u)>

0
...

∇xhj(x̃k(u, 0), ūk)︸ ︷︷ ︸
=:gk,j(u)

∥∥∥∥∥∥∥∥∥∥∥∥
∗

In detail, this looks different for different norms...
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Fk,j(u,w) = hj(x̃k(u, 0), ūk) + ‖∇wx̃k(u,w)∇xhj(x̃k(u, 0), ūk)‖∗
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Infinity Norm - Exact Dual Norm Formulation

Dual of infinity norm is `1-norm.

∥∥∥∥∥∥∥∥∥∥∥∥


Gk,0(u)>

...
Gk,k−1(u)>

0
...

 gk,j(u)

∥∥∥∥∥∥∥∥∥∥∥∥
1

=

k−1∑
m=0

‖Gk,m(u)>gk,j(u)‖1

This formulation is very expensive, because one needs to compute all matrices Gk,m(u) for
k = 1, . . . , N − 1 and m = 0, . . . , k − 1, resulting in O(N2nxnw̄) extra variables.

Let us now see how the robustified problem looks for the Euclidean norm.
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Infinity Norm - Exact Dual Norm Formulation

Dual of infinity norm is `1-norm.

Exact robust problem for `∞-norm bounded disturbances

min
u

F0(u)
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k = 0, . . . , N − 1, j = 1, . . . , nh,

This formulation is very expensive, because one needs to compute all matrices Gk,m(u) for
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Euclidean Norm - Exact Formulation

Euclidean `2-norm is self-dual, so its dual is also the `2-norm.

The computations can be much more efficient if one computes the matrix sums differently...

k∑
m=0

Gk+1,m(u)Gk+1,m(u)>︸ ︷︷ ︸
=Pk+1(u)

= A(uk)

(
k−1∑
m=0

Gk,m(u)Gk,m(u)>

)
︸ ︷︷ ︸

=Pk(u)

A(uk)> + Gk+1,k(u)Gk+1,k(u)>︸ ︷︷ ︸
=Γ(uk)Γ(uk)>

Start at P0(u) := 0 ∈ Rnx×nx , compute Pk+1(u) := A(uk)Pk(u)A(uk)> + Γ(uk)Γ(uk)>
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Euclidean Norm - Exact Formulation

Euclidean `2-norm is self-dual, so its dual is also the `2-norm.∥∥∥∥∥∥∥∥∥∥∥∥
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The computations can be much more efficient if one computes the matrix sums differently...

k∑
m=0

Gk+1,m(u)Gk+1,m(u)>︸ ︷︷ ︸
=Pk+1(u)

= A(uk)

(
k−1∑
m=0

Gk,m(u)Gk,m(u)>

)
︸ ︷︷ ︸

=Pk(u)

A(uk)> + Gk+1,k(u)Gk+1,k(u)>︸ ︷︷ ︸
=Γ(uk)Γ(uk)>

Start at P0(u) := 0 ∈ Rnx×nx , compute Pk+1(u) := A(uk)Pk(u)A(uk)> + Γ(uk)Γ(uk)>
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Euclidean Norm - Exact Formulation with Lyapunov Matrix Equations

One can make all dependencies explicit again, resulting in a sparse NLP in only O(N) - exactly
Nnū + (N + 1)(x+n2

x) - variables u = (u0, . . . , uN−1), x = (x0, . . . , xN ), P = (P0, . . . , PN )

Exact robust problem for `2-norm bounded disturbances

min
u,x,P

F0(u)

s.t. x0 = x̄0, P0 = 0

xk+1 = f(xk, uk, 0)

Pk+1 = A(xk, uk) Pk A(xk, uk)> + Γ(xk, uk)Γ(xk, uk)>

0 ≥ hj(xk, uk) +
√
∇xhj(xk, uk)>Pk∇xhj(xk, uk),

k = 0, . . . , N − 1, j = 1, . . . , nh

where we use A(xk, uk) = ∂f
∂x (xk, uk) and Γ(xk, uk) = ∂f

∂w (xk, uk).
Recall that the formulation is exact for f(x, u, w) = a(uk) +A(uk)xk + Γ(uk)wk.
Can also use as linearization-based approximation for any nonlinear system x+ = f(x, u, w).
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Overview

1 Robust Dynamic Optimization Problem Statement
Challenge 1: Robust constraint satisfaction
Challenge 2: Feedback predictions
Conceptual solution via Robust Dynamic Programming

2 Some exact NLP formulations for robust constraints (some with feedback)
Scenario Tree for Finite Disturbances
Scenario Tree for Polytopic Systems with Convex Costs and Constraints
Dual norm formulation for systems that are affine in disturbances

3 Tube Based Formulations
Ellipsoidal tubes - equivalent to robust `2-norm formulation
Affine Disturbance Feedback Parameterization
Overapproximating ellipsoidal tubes for stagewise bounded uncertainty
Tube approximation for robust nonlinear MPC
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Tube-based Approximation Methods

I Regard again norm-bounded W = {w | ‖w‖ ≤ 1}
I formulate optimization problem in set-valued trajectory

(”tube”) X = (X0, . . . ,XN ) and policy κ = (κ0, . . . , κN−1)

Tube-based optimal control problem

min
X, κ

N−1∑
k=0

L(Xk, κk) + LN (XN )

s.t. X0 = {x̄0},
Xk+1 = F(Xk, κk), k = 0, . . . , N − 1,

0 ≥ h(xk, κk(xk)),∀xk ∈ Xk, k = 0, . . . , N − 1,

0 ≥ r(xN ), ∀xN ∈ XN ,

I Need to parametrize X and κ to obtain a tractable NLP

I Nonlinearity in general leads to non-parametrizable sets →
overapproximate by parametrizable sets, e.g. ellipsoids.

The nonlinear transformation of
an ellipsoid is in general not
ellipsoidal.
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Ellipsoidal tubes - dynamics

Consider the linear time-varying system, for k = 0, . . . , N − 1,

x0 = ¯̄x0, xk+1 = Akxk+Bkuk+Γkwk, with w = (w0, . . . , wN−1) ∈W = {w | ‖w‖2 ≤ 1}.

What is the sequence of sets Xk, so that xk ∈ Xk for all disturbance realizations (”tube”)?

I Variant 1, open-loop control trajectory:
(ū0, . . . , ūN−1)
This results in ellipsoidal state uncertainty sets
Xk = E(x̄k, Pk), with

x̄0 = ¯̄x0, x̄k+1 = Akx̄k +Bkūk

P0 = 0, Pk+1 = AkPkA
>
k + ΓkΓ>k

I Variant 2, with additional linear feedback:
uk = ūk +Kk(xk − x̄k)
Only the ellipsoid dynamics are modified

Pk+1 = (Ak−BkKk)Pk(Ak−BkKk)> + ΓkΓ>k

c

Q

Ellipsoids can be defined via center c and
shape matrix (“variance”) Q � 0.
E(c,Q) := {x | (x− c)>Q−1(x− c) ≤ 1}
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Ellipsoidal tubes - constraints

Given ellipsoidal uncertainty set Xk = E(x̄k, Pk), how to treat
constraints?

b+ a>xk ≤ 0 ∀xk ∈ E(x̄k, Pk)

Reformulate as
b+ max

xk∈E(x̄k,Pk)
a>xk ≤ 0.

For affine constraints we can compute the maximum analytically as

max
xk∈E(x̄k,Pk)

a>xk = a>x̄k +
√
a>Pka,

resulting in

b+ c>x̄k +
√
a>Pka ≤ 0.
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Ellipsoidal tubes - Resulting optimal control problem

Robust optimal control for linear systems with linear state feedback

min
x̄, ū, P,K

N−1∑
k=0

`(x̄k, ūk) + Vf(x̄N )

s.t. x̄0 = ¯̄x0, P0 = 0,

x̄k+1 = Akx̄k +Bkūk, k = 0, . . . , N − 1,

Pk+1 = (Ak −BkKk)Pk(Ak −BkKk)> + ΓkΓ>k , ,

0 ≥ bi + a>i x̄k +
√
a>i Pkai, i = 1, . . . , nc,

0 ≥ b̃j + ã>j ūk +
√
ã>j KkPkK>k ãj , j = 1, . . . , nc̃

I same OCP as from dual norm derivation

I exact constraint satisfaction (Challenge 1), but suboptimal feedback (Challenge 2)

I nonconvex due to optimization over state feedback gains Kk

I if Kk fix, then also Pk fix, resulting in standard OCP with backoff (convex)
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Alternative Feedback Parameterizations

Optimization over state feedback matrices (K1, . . . ,KN−1 is nonconvex and can be
challenging to solve (though not impossible)

I Alternative 1: No feedback in prediction, K = 0, or precomputed feedback gain K̄.
I For a linear system, the ellipsoids can be precomputed offline, resulting in constant

constraint tightening (i.e., the structure of a nominal OCP).
I No feedback, K = 0, leads to unrealistically conservative uncertainty sets.
I Not necessarily obvious what would be a good choice of K̄.

I Alternative 2: Disturbance feedback instead of state feedback

uk = ūk +

k−1∑
m=0

Mk,mwm

I For linear systems (some assumptions on the noise): equivalent to state feedback and leads
to convex optimization problems [Goulart2006].

I Many feedback gains → large-dimensional, expensive optimization problems
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Affine disturbance feedback formulation for `2-norm

Exact robust optimal control with affine disturbance feedback (convex)

min
x̄, ū, G,M

N−1∑
k=0

`k(x̄k, ūk) + Vf(x̄N )

s.t. x̄0 = ¯̄x0,

x̄k+1 = Akx̄k +Bkūk, k = 0, . . . , N − 1,

Gk+1,k = Γk,

Gk+1,n = AkGk,n +BkMk,n n = 0, . . . , k − 1,

0 ≥ bi + a>i x̄k +

√√√√a>i

(
k−1∑
m=0

Gk,mG>k,m

)
ai, i = 1, . . . , nc,

0 ≥ b̃j + ã>j ūk +

√√√√ã>j

(
k−1∑
m=0

Mk,mM>k,m

)
ãj , j = 1, . . . , nc̃
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Extending ellipsoidal tubes to independent stage noises ?

x0 = ¯̄x0, xk+1 = Akxk +Bkuk + Γkwk, .

So far, we assumed w = (w0, . . . , wN ) ∈W = {w ∈ RNnw | ‖w‖2 ≤ 1}. This contains the
assumption that the noise is dependent across time.
Alternative assumption: noise is norm-bounded independently at each time

W = W̄× · · · × W̄︸ ︷︷ ︸
N−times

with W̄ = {w ∈ Rnw̄ | w>w ≤ 1}.

Can in principle be addressed using the affine case with mixed `∞-`2-norm, combined with any
feedback parameterization - but this is expensive. Can we use ellipsoidal tubes instead?
Assume we have Xk = E(x̄k, Pk). Then

Xk = AkXk +Bkuk + ΓkW̄
= E(Akx̄k +Bkuk, AkPkA

>
k ) + E(0,ΓkΓ>k )

Problem: The sum of two ellipsoids is not an ellipsoid.
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Sum of ellipsoids (Minkowski sum)

E(Q0)

E(Q1)

E(Q0) + E(Q1)

E(Q0)

E(Q1)

E(Q2)

E(Q0) + E(Q1) + E(Q2)

The sum of ellipsoids is not ellipsoidal.
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Overapproximating sum of ellipsoids by ellipsoid

I Aim: find Q such that E(Q) ⊇ E(Q1) + E(Q2)

I More general: Find Q such that E(Q) ⊇
∑N
k=1 E(Qk)

I Construct family of outer approximations parametrized by α ∈ RN++

Q(α) =

N∑
k=1

1

αk
Qk ⇒ E(Q(α)) ⊇

N∑
k=1

E(Qk) ∀α ∈ RN++ with
N∑
k=1

αk = 1

I Denote set of feasible α by AN (basically a simplex)

I Parametrized outer approximation is tight

⋂
α∈AN

E(Q(α)) =

N∑
k=1

E(Qk)
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Overapproximating sum of ellipsoids by ellipsoid (cont.)

I In general: Choose α according to some criterion
I e.g., such that E(Q(α)) has minimal size, e.g., minα∈AN tr(Q(α))
I or E(Q(α)) tight in a given direction g ∈ Rn (approximation touches true sum)

min
α ∈ AN

(
max
x ∈ Rn

g>x s.t. x ∈ E(Q(α))

)
= min
α ∈ AN

√
g>Q(α)g =̂ min

α ∈ AN
tr(gg>Q(α))

I Special case N = 2
I Q(α) = 1

α1
Q1 + 1

α2
Q2 with α1 + α2 = 1

I Reparametrize: α2 = 1− α1, β = 1
1−α1

> 0

I Q̃(β) = (1 + 1
β

)Q1 + (1 + β)Q2
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Overapproximations of sum of two ellipsoids

E(Q0)

E(Q1)

E(Q0) + E(Q1)

min trace overapprox

minkowski sum

tight overapprox

tight overapprox
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Overapproximations of sum of three ellipsoids

E(Q0)

E(Q1)

E(Q2)

E(Q0) + E(Q1) + E(Q2)

min trace overapprox

minkowski sum

tight overapprox

tight overapprox
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Uncertain linear dynamical system

xk+1 = Akxk +Bkuk + Γkwk,

I Reachable set

xk ∈ E(x̄k, Pk), wk ∈ W̄

⇒ xk+1 ∈ X̃k+1 = E(Akx̄k +Bkuk, AkPkA
>
k ) + E(ΓkΓ>k )

I X̃k+1 not ellipsoidal
I Overapproximate by ellipsoid

I Overapproximation of reachable set

Pk+1 = (1 + βk)AkPkA
>
k + (1 + 1

βk
)ΓkΓ>k

⇒ X̃k+1 ⊆ E(Pk+1)

⇒ xk+1 ∈ E(Pk+1)
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Overapproximating tubes for stagewise ellipsoidal uncertainty

Robust optimal control for linear systems with linear state feedback

min
x̄, ū, β, P,K

N−1∑
k=0

`(x̄k, ūk) + Vf(x̄N )

s.t. x̄0 = ¯̄x0, P0 = 0,

x̄k+1 = Akx̄k +Bkūk, k = 0, . . . , N − 1,

Pk+1 = (1 + βk)(Ak −BkKk)Pk(Ak −BkKk)> + (1 + (1/βk))ΓkΓ>k ,

0 ≥ bi + a>i x̄k +
√
a>i Pkai, i = 1, . . . , nc,

0 ≥ b̃j + ã>j ūk +
√
ã>j KkPkK>k ãj , j = 1, . . . , nc̃

I Conservative constraint satisfaction (Challenge 1) but suboptimal feedback. Non-convex.

I Not the same as - and cheaper than - dual norm formulation for `∞-`2-norm.
I Three types of ”controls” with two different tasks

I nominal ū = (ū0, . . . , ūN−1) influence x̄k
I gains K = (K0, . . . ,KN−1) and ”Minkowski-multipliers” β = (β0, . . . , βN−1) influence Pk
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Tube approximation for robust nonlinear MPC

I We switch to a nonlinear system

x0 = ¯̄x0, xk+1 = fk(xk, uk, wk), k = 0, . . . , N − 1.

I w = (w0, . . . , wN−1) is drawn from `2-ball with radius σ, i.e., w ∈ E(0, σ2I)

I Similar approach with ellipsoids as before, but we will only have “approximate robustness”
based on linearization at nominal trajectory

x̄0 = ¯̄x0, x̄k+1 = fk(x̄k, ūk, 0)

Ak =
∂fk
∂xk

(x̄k, ūk, 0), Bk =
∂fk
∂uk

(x̄k, ūk, 0), Γk =
∂fk
∂wk

(x̄k, ūk, 0), k = 0, . . . , N − 1.
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Feedback to reduce the uncertainty

I Plan with linear feedback law to reduce uncertainty

uk = κk(xk) = ūk +Kk(xk − x̄k), k = 0, . . . , N − 1, K0 = 0.

I Propagate ellipsoids according to linearized dynamics

P0 = 0, Pk+1 = (Ak +BkKk)Pk(Ak +BkKk)> + σ2ΓkΓ>k︸ ︷︷ ︸
=: ψ(x̄k, ūk, Pk,Kk)

I Left out here, but could also generalize to `∞-`2-norms by including Minkowski-multipliers
βk, or to affine disturbance feedback
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Closed-loop Robustified NMPC problem

min
x̄, ū, P,K

N−1∑
k=0

`k(x̄k, ūk) + Vf(x̄N )

s.t. x̄0 = ¯̄x0, P0 = 0,

x̄k+1 = fk(x̄k, ūk, 0), k = 0, . . . , N − 1,

Pk+1 = ψk(x̄k, ūk, Pk,Kk),

0 ≥ hk(x̄k, ūk) + bk(x̄k, ūk, Pk,Kk),

0 ≥ hN (x̄N ) + bN (x̄N , PN ).

bik(x̄k, ūk, Pk,Kk) =

√
∇hik(x̄k, ūk)>

[
I K>k

]>
Pk
[
I K>k

]
∇hik(x̄k, ūk),

biN (x̄N , PN ) =
√
∇hiN (x̄N )>PN∇hiN (x̄N ),
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Zero-Order Robust Optimization (ZORO) algorithm
[Zanelli et al.: Zero-order robust nonlinear model predictive control with ellipsoidal uncertainty sets, IFAC, 2021],
[Frey et al.: Efficient Zero-Order Robust Optimization with acados, ECC, 2024]

I fix gains Kk (e.g. set to zero)
I iterate between (A) nominal problem with fixed backoffs, and (B) matrix propagation
I converges to feasible but suboptimal solution of combined problem on previous slide

(A) Nominal problem with backoffs - standard NMPC problem

min
x̄, ū

N−1∑
k=0

`k(x̄k, ūk) + Vf(x̄N )

s.t. x̄0 = ¯̄x0, xk+1 = fk(x̄k, ūk, 0), k = 0, . . . , N − 1,

0 ≥ hk(x̄k, ūk) + bk, 0 ≥ hN (x̄N ) + bN

(B) Matrix propagation to compute backoffs

P0 := 0, Pk+1 := ψk(x̄k, ūk, Pk,Kk),

bik :=

√
∇hik(x̄k, ūk)>

[
I K>k

]>
Pk
[
I K>k

]
∇hik(x̄k, ūk), k = 0, . . . , N − 1

biN :=
√
∇hiN (x̄N )>PN∇hiN (x̄N )
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Conclusions

I Robust optimal control needs to address two challenges: robust constraint satisfaction,
and feedback predictions

I Robust Dynamic Programming (RDP) conceptually solves the robust OCP exactly

I Scenario-trees allow one to exactly solve the problem for finite uncertainties and polytopic
systems, but suffer from exponential growth

I dual-norm based approaches can guarantee robust constraint satisfaction for systems
affine in the uncertainty

I affine disturbance feedback is an elegant but expensive way to incorporate feedback

I ellipsoidal tube based uncertainty propagations can lead to conservative approximations

I robust nonlinear MPC problems can be addressed by linearization

I zero-order robust optimization (ZORO) quickly computes feasible but suboptimal solutions
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