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Overview

1 Dynamic Programming on Finite Horizons

2 Linear Quadratic Problems

3 Infinite Horizon Problems

4 Stochastic and Robust Dynamic Programming

5 Monotonicity and Convexity in Dynamic Programming

Dynamic Programming M. Diehl 1



Overview

1 Dynamic Programming on Finite Horizons

2 Linear Quadratic Problems

3 Infinite Horizon Problems

4 Stochastic and Robust Dynamic Programming

5 Monotonicity and Convexity in Dynamic Programming

Dynamic Programming M. Diehl 2



Bellman’s Principle of Optimality

”Principle of Optimality:

An optimal policy has the property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from
the first decision.”

[Bellman, 1957]
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Principle of Optimality - Visualization

Any subarc of an optimal trajectory is also optimal.
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Subarc on [k,N ] is optimal solution for initial value s̄k.
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Prelude: Expressing Constraints via Infinite Cost Values

Can assign infinite cost to infeasible points, using extended reals R̄ := R ∪ {∞,−∞}

Constrained Optimal Control Problem

min
s,a

N−1∑
k=0

c(sk, ak) + E(sN )

s.t. s0 = s̄0

sk+1 = f(sk, ak)

0 ≥ h(sk, ak), k = 0, . . . , N−1

0 ≥ r(sN )

Equivalent Unconstrained Formulation

min
s,a

N−1∑
k=0

c̄(sk, ak) + Ē(sN )

s.t. s0 = s̄0

sk+1 = f(sk, ak), k = 0, . . . , N−1

with c̄(s, a) =

{
c(s, a) if h(s, a) ≤ 0
∞ else

}

and Ē(s) =

{
E(s) if r(s) ≤ 0
∞ else

}
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Dynamic Programming Cost-to-go

IDEA:

I Introduce optimal-cost-to-go function on [k,N ]

Jk(x) := min
sk,ak,...,sN

N−1∑
i=k

c(si, ai) + E (sN ) s.t. sk = x, . . .

I Use principle of optimality on intervals [k, k + 1]:

Jk(xk) = min
sk,ak,sk+1

c(sk, ak) + Jk+1(sk+1)

s.t. sk = xk, sk+1 = f(sk, ak)

xkr xk+1r
-

k+1k
p
N
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Dynamic Programming Step

Can simplify

Jk(xk) = min
sk,ak,sk+1

c(sk, ak) + Jk+1(sk+1)

s.t. sk = xk, sk+1 = f(sk, ak)

by trivial elimination of sk, sk+1 to

Jk(xk) = min
ak

c(xk, ak) + Jk+1(f(xk, ak))

xkr xk+1r
-

k+1k
p
N
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Dynamic Programming Recursion

Iterate backwards, starting from JN (x) := E(x) for all x ∈ S
for k = N − 1, N − 2, . . .

Jk(x) = min
a
c(x, a) + Jk+1(f(x, a))

@
@@R

6

JN (·)

xN

@
@@R

6

JN−1(·)

xN−1

· · ·

@
@@R

6

J0(·)

x0
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The Q-function and the optimal feedback control policy

The finite horizon Bellman recursion is based on minimizing what is often called the
Q-function:

Jk(s) = min
a

c(s, a) + Jk+1(f(s, a))︸ ︷︷ ︸
=:Qk(s,a)

= min
a

Qk(s, a)

and the optimal feedback control law π∗k at time k is defined by

π∗k(s) := arg min
a

Qk(s, a)

These feedback laws together define the optimal feedback control policy (π∗0 , . . . , π
∗
N−1)

which tells us for any state s at any time index k what would be the optimal control action.
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How to get optimal trajectories ?

The optimal policy (π∗0 , . . . , π
∗
N−1) allows us to

solve the original optimal control problem.

Starting with s∗0 := s̄0, we simulate the closed
loop system for k = 0, 1, . . . , N − 1:

a∗k := π∗k(s∗k)

s∗k+1 := f(s∗k, a
∗
k)

yielding the optimal trajectories s∗ = (s∗0, . . . , s
∗
N )

and a∗ = (a∗0, . . . , a
∗
N ) that solve problem (1).

Optimal Control Problem

min
s,a

N−1∑
k=0

c(sk, ak) + E(sN )

s.t. s0 = s̄0

sk+1 = f(sk, ak),

k = 0, . . . , N−1

(1)

Note: MPC applies only π∗0(s̄0). The MPC law can be generated in one of three ways:
(a) via dynamic programming,
(b) via online solution of (1) in classical MPC, or
(c) via offline solution of (1) based on parametric programming in explicit MPC.
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Bellman’s curse of dimensionality

(a) Exact Dynamic Programming is an elegant and powerful way to solve any optimal control
problem to global optimality, independent of convexity. It can be interpreted an efficient
implementation of an exhaustive search that explores all possible control actions for all possible
circumstances.

However, it requires the tabulation of cost-to-go functions Jk(s) for all possible states s ∈ S.
Thus, it is exactly implementable only for discrete state and action spaces, and otherwise
requires a discretization of the state space. Its computational complexity grows exponentially in
the state dimension. This ”curse of dimensionality”, a phrase coined by Richard Bellman,
unfortunately makes exact DP impossible to appy to systems with larger state dimensions.

(b) Classical MPC does circumvent this problem by restricting itself to finding only the optimal
trajectory that starts at the current state s0.

(c) Explicit MPC suffers from the same curse of dimensionality as dynamic programming.
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Illustrative DP Example: Early Stage of a Pandemic (1)

Regard early stage of a new pandemic, where an infectious disease appears in an insular country
(e.g. Australia) and nearly nobody is immune to it yet. Sampling time is the period during
which a person remains infectious (one week). The state of the system in week k is the number
sk ≡ Ik of infectious people, with state space S = N. Via social distancing, the government can
control the reproduction number ak ≡ Rk that describes how many new infections an infected
person produces on average. This number can be varied in the interval A = [Rmin, Rmax] with
Rmin = 0.5 and Rmax = 4. The system dynamics s+ = f(s, a) is given by

Ik+1 = f(Ik, Rk) := bRk Ikc

The government assumes very high economic costs associated to small values of R, and zero
costs for doing nothing (i.e. for R = Rmax). It also puts a small penalty ε = 10−4 on every
infected person. The stage cost c(s, a) is given by

c(I,R) :=
1

R−Rmin
− 1

Rmax −Rmin
+ εI

There is no terminal cost, i.e., E(s) = 0.
Dynamic Programming M. Diehl 12



Illustrative DP Example: Early Stage of a Pandemic (2)

f(I,R) := bR Ic

c(I,R) =
1

R−Rmin
− 1

Rmax −Rmin
+ εI
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Illustrative DP Example: Early Stage of a Pandemic (3)

Cost-to-go function J0, feedback law π∗0 , and
MPC closed-loop simulations s+ = f(s, π∗0(s)) + ε
for different N = 2, 5, 50, 100 [by K. Baumgärtner]
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Linear Quadratic Problems

Regard now linear quadratic optimal control problem of the form

minimize
x,u

N−1∑
i=0

[
xi
ui

]T [
Qi STi
Si Ri

] [
xi
ui

]
+ xTNPNxN

subject to

x0 − x̄0 = 0, (initial value)
xi+1 −Aixi −Biui = 0, i = 0, . . . , N − 1, (discrete system)

This is an equality constrained quadratic program and could thus be solved by linear algebra.

But how to apply dynamic programming here?
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Linear Quadratic Recursion

If

c(x, u) =

[
x
u

]T [
Q ST

S R

] [
x
u

]
and

Jk+1 = xTPx

and
f(x, u) = Ax+Bu

then

Jk(x) = min
u

[
x
u

]T ([
Q ST

S R

]
+

[
ATPA ATPB
BTPA BTPB

]) [
x
u

]
If R+BTPB is positive definite, the solution can be computed via a Schur complement.
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Schur Complement Lemma

Let us simplify notation and regard

φ(x) = min
u

[
x
u

]T [
Q ST

S R

] [
x
u

]
︸ ︷︷ ︸

=ψ(x,u)

with R invertible. Then
φ(x) = xT

(
Q− STR−1S

)
x

and
arg min

u
ψ(x, u) = −R−1Sx

PROOF: exercise.
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Riccati Recursion

The Schur Complement Lemma applied to the LQ recursion:

Jk(x) = min
u

[
x
u

]T [
Q+ATPA ST +ATPB
S +BTPA R+BTPB

] [
x
u

]
delivers directly, if R+BTPB is invertible:

Jk(x) = xTPnewx

with
Pnew = Q+ATPA− (ST +ATPB)(R+BTPB)−1(S +BTPA)

Thus, if Jk+1(·) was quadratic, also Jk(·) is quadratic.
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Difference Riccati Equation

Backwards recursion: starting with PN , we iterate for k = N − 1, . . . , 0

Pk := Qk +ATk Pk+1Ak
− (STk +ATk Pk+1Bk)(Rk +BTk Pk+1Bk)−1(Sk +BTk Pk+1Ak)

Then, we obtain the optimal feedback laws π∗k by

π∗k(xk) = − (Rk +BTk Pk+1Bk)−1(Sk +BTk Pk+1Ak)︸ ︷︷ ︸
=:Kk

xk

and the optimal trajectory via a forward sweep started at x∗0 := x̄0, for k = 0, 1, . . . , N − 1

u∗k := −Kkx
∗
k

x∗k+1 := Akx
∗
k +Bku

∗
k
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Difference Riccati Equation as KKT System Solution

Interestingly, one can also obtain multipliers λ∗k := Pkxk.

One can show that the three trajectories x∗ = (x∗0, . . . , x
∗
N ), u∗ = (u∗0, . . . , u

∗
N−1) and

λ∗ = (λ∗0, . . . , λ
∗
N ) satisfy the first order (KKT) optimality conditions of the original QP, which

we call a KKT system.

Thus, the Riccati recursion can be interpreted as a structure exploiting linear algebra routine
that solves the KKT system of the original sparse QP.
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Inhomogenous Linear Systems

Can we extend the Riccati recursion also to inhomogenous costs and systems? I.e. problems of
the form:

minimize
x,u

N−1∑
i=0

 1
xi
ui

T  0 qTi sTi
qi Qi STi
si Si Ri

 1
xi
ui

+

[
1
xN

]T [
0 pTN
pN PN

] [
1
xN

]
subject to

x0 − xfix
0 = 0, (initial value)

xi+1 −Aixi −Biui − ci = 0, i = 0, . . . , N − 1, (discrete system)
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Why Inhomogenous Systems and Costs?

They appear in

I Linearization of Nonlinear Systems

I Reference Tracking Problems e.g. with ci(xi, ui) = ‖xi − xref
i ‖2Q + ‖ui‖2R

I Filtering Problems (Moving Horizon Estimation, Kalman Filter) with cost
ci(xi, ui) = ‖Cxi − ymeas

i ‖2Q + ‖ui‖2R
I Subproblems in active set methods or interior point methods for inequality constrained QP
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A Simple Programming Trick

By augmenting the system states xk to

x̃k =

[
1
xk

]
and replacing the dynamics by

x̃k+1 =

[
1 0
ck Ak

]
x̃k +

[
0
Bk

]
uk

with initial value

x̃fix
0 =

[
1
xfix

0

]
This is a homogenous problem and can be solved exactly as before!
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Infinite Horizon Problem

Can regard more general infinite horizon problem:

minimize
s,a

∞∑
i=0

c(si, ai)

subject to

s0 − x0 = 0, (initial value)
si+1 − f(si, ai) = 0, i = 0, . . . ,∞, (discrete system)
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The Stationary Bellman Equation

Requiring stationarity of solutions of Dynamic Programming Recursion:

Jk = Jk+1

leads directly to the stationary Bellman Equation:

J(s) = min
a
c(s, a) + J(f(s, a))︸ ︷︷ ︸

=Q(s,a)

The optimal controls are then obtained by the function

π∗(s) = arg min
a

Q(s, a).

This feedback is called the stationary Optimal Feedback Control, the holy grail of this course.
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Infinite Horizon Problems with Discounted Cost

To express that future costs matter less than immediate costs, one introduces exponentially
decaying weights with discounting factor γ ∈ (0, 1) as follows

minimize
s,a

∞∑
i=0

(γ)i c(si, ai)

subject to

s0 − x0 = 0, (initial value)
si+1 − f(si, ai) = 0, i = 0, . . . ,∞, (discrete system)

The stationary Bellman equation then simply becomes

J(s) = min
a
c(s, a) + γJ(f(s, a))︸ ︷︷ ︸

=Q(s,a)
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Linear Quadratic Regulator (LQR)

Regard now LQ problem with infinite horizon and time independent system and cost:

minimize
x,u

∞∑
i=0

[
xi
ui

]T [
Q ST

S R

] [
xi
ui

]
subject to

x0 − xfix
0 = 0, (initial value)

xi+1 −Axi +Bui = 0, i = 0, . . . ,∞. (discrete system)

How to apply dynamic programming here?
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Algebraic Riccati Equation

Require stationary solution of Riccati Recursion:

Pk = Pk+1

i.e.
P = Q+ATPA− (ST +ATPB)(R+BTPB)−1(S +BTPA)

This is called the Algebraic Riccati Equation (in discrete time) Then, we obtain the optimal
feedback π∗(s) by

π∗(s) = − (R+BTPB)−1(S +BTPA)︸ ︷︷ ︸
=K

s

The resulting controller is called the Linear Quadratic Regulator (LQR), and K is the LQR gain.
Implementing it online just requires one matrix vector multiplication: a = −Ks

Note that the cost for an optimal trajectory starting at s0 is J(s0) = s>0 Ps0.
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Winter Hill Example (1)

We want to drive on top of a hill in winter, on an icy road. State x = (x1, x2) = (p, v).
Tire friction too small to counteract gravity for steepest slope at p = −5.

ẋ1 = x2

ẋ2 = u− 2

1 + (x1 + 5)2

c(x, u) = x2
1 + 0.01x2

2 + 0.01u2

|u| ≤ 1.5
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Winter Hill Example (2)

[by K. Baumgärtner]Dynamic Programming M. Diehl 32



Winter Hill Example (3)

[by K. Baumgärtner]
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Winter Hill Example (4)

[by K. Baumgärtner]Dynamic Programming M. Diehl 34



Winter Hill Example (5)

[by K. Baumgärtner]
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Stochastic Dynamic Programming

For stochastic systems, we want to find the feedback law that gives us the best expected value.
We take an expectation over the disturbances εk and obtain the stochastic DP recursion:

Jk(s) = min
a

Eε{c(s, a, ε) + Jk+1(f(s, a, ε))}︸ ︷︷ ︸
Qk(s,a)

where Eε{·} is the expectation operator, i.e. the integral over ε weighted with the probability
density function p(ε|s, a) of ε given s and a:

Eε{ c(s, a, ε) } =

∫
c(s, a, ε) p(ε|s, a) dε

In case of finitely many scenarios, this is just a weighted sum.
DP avoids the combinatorial explosion of scenario trees that appear in stochastic MPC.
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Robust Dynamic Programming

Dynamic Programming can easily be applied to games (like chess). Here, an adverse player
choses disturbances wk against us. They influence both the stage costs c as well as the system
dynamics f .
The robust DP recursion is simply:

Jk(s) = min
s

max
w

c(s, a, w) + Jk+1(f(s, a, w))︸ ︷︷ ︸
Qk(s,a)

starting with
JN (s) = E(s)
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Monotonicity of Dynamic Programming

The “cost-to-go” Jk is often also called the “value function”.
The “dynamic programming operator” T acting on one value function and giving another one
is defined by

T [J ](s) := min
a
c(s, a) + J(f(s, a)).

Dynamic programming recursion now compactly written as Jk = T [Jk+1].
We write J ≥ J ′ if J(s) ≥ J ′(s) for all s ∈ S.
One can prove that

J ≥ J ′ ⇒ T [J ] ≥ T [J ′]

This is called “monotonicity” of dynamic programming. It holds also for robust or stochastic
dynamic programming. It can e.g. be used in existence proofs for solutions of the stationary
Bellman equation, or in stability proofs for MPC (JN ≥ JN−1 ⇒ J1 ≥ J0)
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Convex Dynamic Programming

Another interesting observation is that certain DP operators T preserve convexity of the value
function J .

THEOREM: If system is affine and stage cost convex, i.e., if

I f(s, a, w) = A(w)s+B(w)a+ c(w),

I c(s, a, w) is convex in (s, a)

then DP, stochastic DP, and robust DP operators T preserve convexity of J , i.e.

J convex ⇒ T [J ] convex
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Proof of Convexity Preservation

Regard c(s, a, w) + J(f(s, a, w)).
For fixed w, this is a convex function in (s, a). Because also maximum over w or expectation
preserve convexity, the function

Q(s, a)

is in all three cases convex in both s and a.
Finally, the minimization of a convex function over one of its arguments preserves convexity,
i.e. the resulting value function T [J ] defined by

T [J ](s) = min
a
Q(s, a)

is convex.
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Why is convexity important?

I computation of feedback law arg minaQ(s, a) is convex and can be solved reliably.

I can represent value function J(s) more efficiently than by tabulation, e.g. as maximum of
linear functions

J(s) = max
i

a>i

[
1
s

]
I In robust DP, convexity of value function allows us to conclude, in case of polytopic

uncertainty, that worst case is assumed on boundary of the polytope.
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Summary

I Dynamic Programming recursion: Jk(s) = mina c(s, a) + Jk+1(f(s, a))

I feedback π∗k(s) = arg minaQk(s, a) with Qk(s, a) := c(s, a) + Jk+1(f(s, a))

I linear quadratic problems can be analytically solved (LQR) with feedback a = −Ks.

I in contrast to online MPC, DP suffers from curse of dimensionality

I in contrast to online MPC, DP can easily address stochastic and robust problems
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