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What is an optimization problem?

Optimization is used in all quantitative sciences and engineering. Its aim is to minimize (or
maximize) an objective function F (w) depending on decision variables w = (w1, . . . , wn)
subject to constraints.

Optimization Problem

min
w∈Rn

F (w) (1a)

s.t. G(w) = 0 (1b)

H(w) ≥ 0 (1c)

Terminology

I w ∈ Rn - vector of decision variables

I F : Rn → R - objective function

I G : Rn → RnG - equality constraints

I H : Rn → RnH - inequality constraints

I only in a few special cases a closed form solution exists

I if F,G,H are nonlinear and smooth, we speak of a nonlinear programming problem (NLP)

I usually we need iterative algorithms to find an approximate solution

I in NMPC, the problem depends on parameters that change every sampling time
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Basic definitions: the feasible set

Definition

The feasible set of the optimization problem (1) is defined as
Ω = {w ∈ Rn | G(w) = 0, H(w) ≥ 0}. A point w ∈ Ω is is called a feasible point.

In the example, the feasible set is the intersection of the two grey areas (halfspace and circle)

Nonlinear Optimization M. Diehl 3/41



Basic definitions: global and local minimizer

Definition (Global Minimizer)

Point w∗ ∈ Ω is a global minimizer of the NLP (1)
if for all w ∈ Ω it holds that F (w) ≥ F (w∗).

Definition (Local Minimizer)

Point w∗ ∈ Ω is a local minimizer of the NLP (1) if
there exists a ball Bε(w∗) = {w|‖w − w∗‖ ≤ ε} with
ε > 0, such that for all w ∈ Bε(w∗) ∩ Ω it holds that
F (w) ≥ F (w∗)

The value F (w∗) at a local/global minimizer w∗ is
called local/global minimum, or minimum value.
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Convex sets
a key concept in optimization

A set Ω is said to be convex if for any w1, w2 and any θ ∈ [0, 1] it holds θw1 + (1− θ)w2 ∈ Ω
Figure inspired by Figure 2.2 in S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.
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Convex functions

I A function F : Ω→ R is convex if for
every w1, w2 ∈ Ω ⊂ Rn and θ ∈ [0, 1] it
holds that

F (θw1+(1−θ)w2) ≤ θF (w1)+(1−θ)F (w2)

I F is concave if and only if −F is convex

I F is convex if and only if the epigraph

epiF = {(w, t) ∈ Rnw+1 | w ∈ Ω, F (w) ≤ t}

is a convex set
w

F
(w

)

(w1; F (w1))

(w2; F (w2))

3F (w1) + (1! 3)F (w2)

F (3w1 + (1! 3)w2)
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Convex optimization problems

A convex optimization problem

min
w

F (w)

s.t. G(w) = 0

H(w) ≥ 0

An optimization problem is convex if the
objective function F is convex and the
feasible set Ω is convex.

I For convex problems, every locally optimal solution is globally optimal

I First order conditions are necessary and sufficient

I ”...in fact, the great watershed in optimization isn’t between linearity and nonlinearity, but
convexity and nonconvexity.” R. T. Rockafellar, SIAM Review, 1993
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Some classification of optimization problems

Optimization problems can be:

I unconstrained (Ω = Rn) or constrained (Ω ⊂ Rn)

I convex or nonconvex

I linear or nonlinear

I differentiable or nonsmooth

I continuous or (mixed-)integer

I finite or infinite dimensional

”... the main fact, which should be known to any person dealing with optimization models, is
that in general, optimization problems are unsolvable.”
Yurii Nesterov, Lectures on Convex Optimization, 2018.

(”solvable” refers to finding a global minimizer)
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Class 1: Linear Programming (LP)

Linear program

min
w∈Rn

g>w

s.t. Aw − b = 0

Cw − d ≥ 0

I convex optimization problem

I 1947: simplex method by G. Dantzig

I a solution is always at a vertex of the feasible set (possibly a whole facet if nonunique)

I very mature and reliable
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Class 2: Quadratic Programming (QP)

Quadratic Program (QP)

min
w∈Rn

1

2
w>Qw + g>w

s.t. Aw − b = 0

Cw − d ≥ 0

I depending on Q, can be convex and nonconvex

I solved online in linear model predictive control

I many good solvers: Gurobi, OSQP, HPIPM, qpOASES, OOQP, DAQP...

I subsproblems in nonlinear optimization

Nonlinear Optimization M. Diehl 10/41



Class 3: Nonlinear Programming (NLP)

Nonlinear Rrogram (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

H(w) ≥ 0

I can be convex and nonconvex

I solved with iterative Newton-type algorithms

I solved in nonlinear model predictive control
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Class 4: Mathematical Programming with Complementarity Constraints
short: MPCC

MPCC

min
w0,w1,w2

F (w)

s.t. G(w) = 0

H(w) ≥ 0

0 ≤ w1 ⊥ w2 ≥ 0

w = [w>0 , w
>
1 , w

>
2 ]>, w1 ⊥ w1 ⇔ w>1 w2 = 0

I more difficult than standard nonlinear programming

I feasible set is inherently nonsmooth and nonconvex

I powerful modeling concept

I requires specialized theory and algorithms
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Class 5: Mixed-Integer Nonlinear Programming (MINLP)

Mixed-Integer Nonlinear Program (MINLP)

min
w0∈Rp,w1∈Zq

F (w)

s.t. G(w) = 0

H(w) ≥ 0

w = [w>0 , w
>
1 ]>, n = p+ q

I inherently nonconvex feasible set

I due to combinatorial nature, NP-hard even for linear F,G,H

I branch and bound, branch and cut algorithms based on iterative solution of relaxed
continuous problems
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Class 6: Continuous-Time Optimal Control

Optimal Control Problem (OCP)

min
x(·),u(·)

∫ T
0
Lc(x(t), u(t)) dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) = fc(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

I decision variables x(·), u(·) in infinite
dimensional function space

I infinitely many constraints (t ∈ [0, T ])

I smooth ordinary differential equation
(ODE) ẋ(t) = fc(x(t), u(t))

I more generally, dynamic model can be
based on
I differential algebraic equations (DAE)
I partial differential equations (PDE)
I nonsmooth ODE
I stochastic ODE

I OCP can be convex or nonconvex

I all or some components of u(t) may take
integer values (mixed-integer OCP)
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Direct optimal control methods solve Nonlinear Programs (NLP)

Continuous-time OCP

min
x(·),u(·)

∫ T
0
Lc(x(t), u(t)) dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) = fc(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

Direct methods like direct collocation,
multiple shooting first discretize, then
optimize.
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Discrete-time OCP (an NLP)

min
x,u

∑N−1
k=0 `(xk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = f(xk, uk)

0 ≥ h(xk, uk), k = 0, . . . , N−1

0 ≥ r(xN )

Variables x = (x0, . . . , xN ) and
u = (u0, . . . , uN−1) can be summarized in
vector w = (x, u) ∈ Rn.
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Nonlinear MPC solves Nonlinear Programs (NLP)

Discrete time NMPC Problem (an NLP)

min
x,u

∑N−1
k=0 `(xk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = f(xk, uk)
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Algebraic characterization of unconstrained local minimizers

Consider the unconstrained problem: minw∈Rn F (w)

First-Order Necessary Condition of Optimality (FONC) (in convex case also sufficient)

w∗ local optimizer ⇒ ∇F (w∗) = 0, w∗ stationary point

Second-Order Necessary Condition of Optimality (SONC)

w∗ local minimizer ⇒ ∇2F (w∗) � 0

Second-Order Sufficient Conditions of Optimality (SOSC)

∇F (w∗) = 0 and ∇2F (w∗) � 0 ⇒ x∗ strict local minimizer

∇F (w∗) = 0 and ∇2F (w∗) ≺ 0 ⇒ x∗ strict local maximizer

no conclusion can be drawn in the case ∇2F (w∗) is indefinite
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Types of stationary points
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a stationary point w with ∇F (w) = 0 can be a minimizer, a maximizer, or a saddle point
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Optimality conditions - unconstrained

I necessary conditions: find a candidate
point (or to exclude points)

I sufficient conditions: verify optimality
of a candidate point

I a minimizer must satisfy SONC, but
does not have to satisfy SOSC

-2 0 2 4

0

20

40

F
(w

)

-2 0 2 4
-100

-50

0

r
F

(w
)

-2 0 2 4

w

0

50

100

r
2
F

(w
)

Nonlinear Optimization M. Diehl 19/41



Optimality conditions - unconstrained

I necessary conditions: find a candidate
point (or to exclude points)

I sufficient conditions: verify optimality
of a candidate point

I a minimizer must satisfy SONC, but
does not have to satisfy SOSC

-2 0 2 4
0

50

100

F
(w

)

-2 0 2 4
-50

0
50

100

r
F

(w
)

-2 0 2 4

w

0

50

100

r
2
F

(w
)

Nonlinear Optimization M. Diehl 19/41



First order necessary conditions for equality constrained optimization

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

Lagrangian function L(w, λ) := F (w)− λ>G(w)

Definition (LICQ)

A point w satisfies Linear Independence
Constraint Qualification (LICQ) if and only
if ∇G (w) := ∂G

∂w (w)> is full column rank

First-Order Necessary Conditions (in convex case also sufficient)

Let F,G in C1. If w∗ is a (local) minimizer, and w∗ satisfies LICQ, then there is a unique
vector λ such that:

∇wL(w∗, λ∗) = ∇F (w∗)−∇G(w∗)λ = 0 dual feasibility

∇λL(w∗, λ∗) = G(w∗) = 0 primal feasibility
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Duality in a nutshell
for equality constrained optimization

Primal Problem

p∗ = min
w∈Rn

F (w) s.t. G(w) = 0

with Lagrangian L(w, λ) := F (w)− λ>G(w).

Lagrange dual function Q(λ) := infw∈Rn L(w, λ)

I Q(λ) - concave in λ by construction

I Q(λ) ≤ p∗ for all λ ∈ RnG

Dual Problem

d∗ = max
λ∈RnG

Q(λ)

I weak duality: d∗ ≤ p∗, always holds

I strong duality: d∗ = p∗, only holds for
some problems (e.g. convex ones)

Wolfe Dual (in convex case)

d∗ = max
w∈Rn,λ∈RnG

L(w, λ)

s.t. ∇wL(w, λ) = 0

(w constrained by lower level optimality)
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The Karush-Kuhn-Tucker (KKT) conditions

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

H(w) ≥ 0

L(w, λ) = F (w)− λ>G(w)− µ>H(w)

Definition (LICQ)

A point w satisfies LICQ if and only if

[∇G (w) , ∇HA (w)]

is full column rank

Active set A = {i | Hi(w) = 0}

Theorem (KKT conditions - FONC for constrained optimization)

Let F, G, H be C1. If w∗ is a (local) minimizer and satisfies LICQ, then there are unique
vectors λ∗ and µ∗ such that (w∗, λ∗, µ∗) satisfies:

∇wL (w∗, µ∗, λ∗ ) = 0, µ∗ ≥ 0, dual feasibility

G (w∗) = 0, H (w∗) ≥ 0 primal feasibility

µ∗iHi(w
∗) = 0, ∀ i complementary slackness
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Complementarity Conditions

Complementarity conditions
0 ≥ µ ⊥ H(w) ≥ 0 form an L-shaped,
nonsmooth manifold.

I Hi(w
∗) > 0 then µ∗i = 0, and Hi is

inactive

I µ∗i > 0 and Hi(w) = 0 then Hi(w) is
strictly active

I µ∗i = 0 and Hi(w) = 0 then then Hi(w) is
weakly active

I We define the active set A as the set of
indices i of the active constraints

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

7
i

Nonlinear Optimization M. Diehl 23/41



Complementarity Conditions

Complementarity conditions
0 ≥ µ ⊥ H(w) ≥ 0 form an L-shaped,
nonsmooth manifold.

I Hi(w
∗) > 0 then µ∗i = 0, and Hi is

inactive

I µ∗i > 0 and Hi(w) = 0 then Hi(w) is
strictly active

I µ∗i = 0 and Hi(w) = 0 then then Hi(w) is
weakly active

I We define the active set A as the set of
indices i of the active constraints

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

7
i

Nonlinear Optimization M. Diehl 23/41



Complementarity Conditions

Complementarity conditions
0 ≥ µ ⊥ H(w) ≥ 0 form an L-shaped,
nonsmooth manifold.

I Hi(w
∗) > 0 then µ∗i = 0, and Hi is

inactive

I µ∗i > 0 and Hi(w) = 0 then Hi(w) is
strictly active

I µ∗i = 0 and Hi(w) = 0 then then Hi(w) is
weakly active

I We define the active set A as the set of
indices i of the active constraints

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

7
i

Nonlinear Optimization M. Diehl 23/41



Complementarity Conditions

Complementarity conditions
0 ≥ µ ⊥ H(w) ≥ 0 form an L-shaped,
nonsmooth manifold.

I Hi(w
∗) > 0 then µ∗i = 0, and Hi is

inactive

I µ∗i > 0 and Hi(w) = 0 then Hi(w) is
strictly active

I µ∗i = 0 and Hi(w) = 0 then then Hi(w) is
weakly active

I We define the active set A as the set of
indices i of the active constraints

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

7
i

Nonlinear Optimization M. Diehl 23/41



Some intuition on the KKT conditions
Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

min
w∈R2

F (w)

s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude

I weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

I inactive constraint H (w) > 0, µ = 0

H (w) > 0, µ = 0

!rF (w)

7rH(w)

7 =0.857
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w1
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-1

0

1

2

3

4

w
2

Balance of the forces:

∇L(w, µ) = ∇F (w)− µ∇H(w) = 0

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude

I weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed
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Balance of the forces:

∇L(w, µ) = ∇F (w)− µ∇H(w) = 0

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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min
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F (w)

s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude

I weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed
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Balance of the forces:

∇L(w, µ) = ∇F (w)− µ∇H(w) = 0

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
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I ∇H gives the direction of the force and µ
adjusts the magnitude

I weakly active constraint:
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∇L(w, µ) = ∇F (w)− µ∇H(w) = 0

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude

I weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

I inactive constraint H (w) > 0, µ = 0

H (w) > 0, µ = 0
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∇L(w, µ) = ∇F (w)− µ∇H(w) = 0

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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min
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F (w)

s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
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I weakly active constraint:
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∇L(w, µ) = ∇F (w)− µ∇H(w) = 0

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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Outline of the lecture

1 Basic definitions

2 Some classification of optimization problems

3 Optimality conditions

4 Nonlinear programming algorithms
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Newton’s method
To solve a nonlinear system, solve a sequence of linear systems

Linearization of F at linearization point w̄

equals

First order Taylor series at w̄

equals

FL(w; w̄) := F (w̄) +
∂F

∂w
(w̄) (w − w̄)

(for continuously differentiable F : Rn → Rn)
-1 -0.5 0 0.5 1 1.5 2 2.5 3

w

-1

0

1

2

3

4

5

6

F
(w

)

Iteration 0

y = F (w)
y = F (wk) + rF (wk)>(w ! wk)
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General Nonlinear Program (NLP)

In direct methods, we have to solve the discretized optimal control problem, which is a
Nonlinear Program (NLP)

General Nonlinear Program (NLP)

min
w
F (w) s.t.

{
G(w) = 0
H(w) ≥ 0

We first treat the case without inequalities

NLP only with equality constraints

min
w
F (w) s.t. G(w) = 0
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Lagrange function and optimality conditions

Lagrange function

L(w, λ) = F (w)− λTG(w)

Then for an optimal solution w∗ exist multipliers λ∗ such that

Nonlinear root-finding problem

∇wL(w∗, λ∗) = 0
G(w∗) = 0
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Newton’s Method on optimality conditions

Newton’s method to solve
∇wL(w∗, λ∗) = 0

G(w∗) = 0 ?

results, at iterate (wk, λk), in the following linear system:

∇wL(wk, λk) +∇2
wL(wk, λk)∆w −∇wG(wk)∆λ = 0

G(wk) +∇wG(wk)T∆w = 0

Due to ∇L(wk, λk) = ∇F (wk)−∇G(wk)λk this is equivalent to

∇wF (wk) +∇2
wL(wk, λk)∆w −∇wG(wk)λ+ = 0

G(wk) +∇wG(wk)T∆w = 0

with the shorthand λ+ = λk + ∆λ
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Newton Step = Quadratic Program

Conditions
∇wF (wk) +∇2

wL(wk, λk)∆w −∇wG(wk)λ+ = 0
G(wk) +∇wG(wk)T∆w = 0

are optimality conditions of a quadratic program (QP), namely:

Quadratic program

min
∆w

∇F (wk)T∆w +
1

2
∆wTAk∆w

s.t. G(wk) +∇G(wk)T∆w = 0,

with Ak = ∇2
wL(wk, λk)
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Newton’s method

The full step Newton’s Method iterates by solving in each iteration the Quadratic Progam

Quadratic Program in Sequential Quadratic Programming (SQP)

min
∆w

∇F (wk)T∆w +
1

2
∆wTAk∆w

s.t. G(wk) +∇G(wk)T∆w = 0,

with Ak = ∇2
wL(wk, λk).

This obtains as solution the step ∆wk and the new multiplier λ+
QP = λk + ∆λk

New iterate

wk+1 = wk + ∆wk

λk+1 = λk + ∆λk = λ+
QP

This is the ”full step, exact Hessian SQP method for equality constrained optimization”.
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NLP with Inequalities

Regard again NLP with both, equalities and inequalities:

NLP with equality and inequality constraints

min
w
F (w) s.t.

{
G(w) = 0
H(w) ≥ 0

Lagrangian function for NLP with equality and inequality constraints

L(w, λ, µ) = F (w)− λTG(w)− µTH(w)
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Recall necessary optimality conditions with inequalities

Theorem (Karush-Kuhn-Tucker (KKT) conditions)

Let F, G, H be C2. If w∗ is a (local) minimizer and satisfies LICQ, then there are unique
vectors λ∗ and µ∗ such that (w∗, λ∗, µ∗) satisfies:

∇wL (w∗, µ∗, λ∗ ) = 0

G (w∗) = 0

H(w∗) ≥ 0

µ∗ ≥ 0

H(w∗)>µ∗ = 0

I Last three ”complementarity conditions” are nonsmooth

I Thus, this system cannot be solved by Newton’s Method. But still with SQP...
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Sequential Quadratic Programming (SQP) with Inequalities

By linearizing all functions and setting λ+ = λk + ∆λ, µ+ = µk + ∆µ, we obtain the KKT
conditions of the following Quadratic Program (QP)

Inequality Constrained Quadratic Program within SQP method

min
∆w

∇F (wk)T∆w +
1

2
∆wTAk∆w

s.t.

{
G(wk) +∇G(wk)T∆w = 0
H(wk) +∇H(wk)T∆w ≥ 0

with
Ak = ∇2

wL(wk, λk, µk)

Its solution delivers the next SQP iterate

∆wk, λ+
QP, µ+

QP
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Constrained Gauss-Newton Method

In special case of least squares objectives

Least squares objective function

F (w) =
1

2
‖R(w)‖22

can approximate Hessian ∇2
wL(wk, λk, µk) by much cheaper

Ak = ∇R(w)∇R(w)>.

Need no multipliers to compute Ak.

Gauss-Newton QP = Constrained Linear Least Squares Problem

min
∆w

1

2
‖R(wk) +∇R(wk)T∆w‖22

s.t.
G(wk) +∇G(wk)T∆w = 0
H(wk) +∇H(wk)T∆w ≥ 0

Linear convergence. Fast, if objective value ‖R(w∗)‖ small or nonlinearity of R,G,H small
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Interior Point Methods
(without equalities for simplicity of exposition)

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

KKT conditions

∇F (w)−∇H(w)>µ = 0

0 ≤ µ ⊥ H(w) ≥ 0

Main difficulty: nonsmoothness of
complementarity conditions
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Barrier Problem in Interior Point Method

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Idea: put inequality constraint into objective

Barrier Problem

min
w

F (w)− τ
m∑
i=1

log(Hi(w)) =: Fτ (w)

0 0.5 1 1.5 2 2.5 3
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1.5
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2.5

3

@
(H

i(
w

))

= =5.000

@(Hi(w))
!= log(Hi(w))

approximate:

χ(Hi(w)) =

{
0 if Hi(w) ≥ 0

∞ if Hi(w) < 0
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Barrier Problem in Interior Point Method

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0
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Example Barrier Problem

Example NLP

min
w

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1

Barrier problem

min
w

0.5w2 − 2− τ log(w + 1)− τ log(1− w) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w
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= =5.000
F (w)
F= (w)
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Primal-dual interior point methods
Alternative interpretation

Barrier problem

min
w

F (w)− τ
m∑
i=1

log(Hi(w)) =: Fτ (w)

KKT conditions

∇F (w)− τ
m∑
i−1

1

Hi(w)
∇Hi(w) = 0

Introduce variable µi = τ
Hi(w)

Smoothed KKT conditions

∇F (w)−∇H(w)>µ = 0

Hi(w)µi = τ

(Hi(w) > 0, µi > 0)

Solve nonsmooth system with Newtons’
method
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Primal-dual interior point method

Nonlinear programming problem

min
w,s

F (w)

s.t. G(w) = 0

H(w)− s = 0

s ≥ 0

Smoothed KKT conditions

Rτ (w, s, λ, µ) =


∇wL(w, λ, µ)

G(w)
H(w)− s

diag(s)µ− τe

 = 0

(s, µ > 0)

e = (1, . . . , 1)

Fix τ , perform Newton iterations

Rτ (w, s, λ, µ) +∇Rτ (w, s, λ, µ)>∆z = 0

with z = (w, s, λ, µ)

Line-search

Find α ∈ (0, 1)

wk+1 = wk + α∆w

sk+1 = sk + α∆s

λk+1 = λk + α∆λ

µk+1 = µk + α∆µ

such that sk+1 > 0, µk+1 > 0

Reduce τ , and perform next Newton
iterations solve, etc
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Summary Nonlinear Optimization

I optimization problem come in many variants (LP, QP, NLP, MPCC, MINLP, OCP, ....)

I each problem class be addressed with suitable software

I nonlinear MPC needs to solve nonlinear programs (NLP)

I Lagrangian function, duality, and KKT conditions are important concepts

I for convex problems holds strong duality, KKT conditions sufficient for global optimality

I Newton-type optimization for NLP solves the nonsmooth KKT conditions via Sequential
Quadratic Programming (SQP, e.g. acados) or via Interior Point Method (e.g. ipopt)

I NLP solvers need to evaluate first and second order derivatives (e.g. via CasADi)
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