
1. Theory and algorithms for nonlinear
programming

Armin Nurkanović
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What is an optimization problem?
Optimization is a powerful tool used in all quantitative sciences.

Minimize (or maximize) an objective function F (w) depending on decision variables w subject
to equality and/or inequality constrains

An optimization problem

min
w∈Rn

F (w) (1a)

s.t. G(w) = 0 (1b)

H(w) ≥ 0 (1c)

Terminology

▶ w ∈ Rn - decision variable

▶ F : Rn → R - objective

▶ G : Rn → RnG - equality constraints

▶ H : Rn → RnH - inequality constraints

▶ If F,G,H are nonlinear and smooth, we speak of a nonlinear programming problem (NLP).

▶ Only in few special cases a closed form solution exists.

▶ Use an iterative algorithm to find an approximate solution.

▶ Problem may be parametric, and some (or all) functions depend on a fixed parameter
p ∈ Rp, e.g. model predictive control.
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Basic definitions: the feasible set

Definition

The feasible set of the optimization problem (1) is defined as
Ω = {w ∈ Rn | G(w) = 0, H(w) ≥ 0}. A point w ∈ Ω is is called a feasible point.

In the example, the feasible set is the intersection of the two grey areas (halfspace and circle).
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Basic definitions: local and global minimizer

Definition (Local minimizer)

A point w∗ ∈ Ω is called a local minimizer of the
optimization problem (1) if there exists an open ball
Bϵ(w

∗) with ϵ > 0, such that for all w ∈ Bϵ(w
∗) ∩ Ω

it holds that F (w) ≥ F (w∗).

Definition (Global minimizer)

A point w∗ ∈ Ω is called a global minimizer of (1)
if for all w ∈ Ω it holds that F (w) ≥ F (w∗).

▶ The value F (w∗) at a local/global minimizer
w∗ is called local/global minimum.
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Convex sets
A key concept in optimization is convexity.

A set Ω is said to be convex if for any w1, w2 and any θ ∈ [0, 1] it holds θw1 + (1− θ)w2 ∈ Ω

Figure inspired by Figure 2.2 in S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge university press, 2004.
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Convex functions

▶ A function F is convex if for every
w1, w2 ∈ Rn and θ ∈ [0, 1] it holds that

F (θw1+(1−θ)w2) ≤ θF (w1)+(1−θ)F (w2)

▶ F is concave if and only if −F is convex

▶ F is convex if and only if the epigraph

epiF = {(w, t) ∈ Rnw+1 | F (w) ≤ t}

is a convex set

w
F

(w
)

(w1; F (w1))

(w2; F (w2))

3F (w1) + (1! 3)F (w2)

F (3w1 + (1! 3)w2)
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Convex optimization problems

A convex optimization problem

min
w∈Rn

F (w)

s.t. G(w) = 0

H(w) ≥ 0

An optimization problem is convex if the
objective function F is convex and the
feasible set Ω is convex.

▶ For convex problems, every locally optimal solution is globally optimal.

▶ First-order optimality conditions are necessary and sufficient.

▶ Many iterative algorithms for nonconvex optimization solve a sequence of convex
optimization problems.

”...in fact, the great watershed in optimization isn’t between linearity and nonlinearity, but
convexity and nonconvexity.” R. T. Rockafellar, SIAM Review, 1993
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Some classifications of optimization problems

Optimization problems can be:

▶ unconstrained (Ω = Rn) or constrained (Ω ⊂ Rn)

▶ convex or nonconvex

▶ linear or nonlinear

▶ differentiable or nonsmooth

▶ continuous or (mixed-)integer

▶ finite or infinite dimensional

”... the main fact, which should be known to any person dealing with optimization models, is
that in general, optimization problems are unsolvable.”
Yurii Nesterov, Lectures on Convex Optimization, 2018.

(“solvable” refers to finding a global minimizer)
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Class 1: Linear Programming (LP)

Linear program

min
w∈Rn

g⊤w

s.t. Aw − b = 0

Cw − d ≥ 0

▶ convex optimization problem

▶ 1947: simplex method by Dantzig, 1984: polynomial time interior-point method by
Karmarkar

▶ a solution is always at a vertex of the feasible set (possibly a whole facet if nonunique)

▶ very mature and reliable
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Class 2: Quadratic Programming (QP)

Quadratic program

min
w∈Rn

1

2
w⊤Qw + g⊤w

s.t. Aw − b = 0

Cw − d ≥ 0

▶ depending on Q, can be convex and nonconvex

▶ many good solvers: OSQP, HPIPM, qpOASES, Gurobi, Clarabel, DAQP, OOQP, MOSEK, ...

▶ solved online in linear model predictive control

▶ subsproblems in nonlinear optimization
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Class 3: Nonlinear Program (NLP)

Nonlinear programming problem

min
w∈Rn

F (w)

s.t. G(w) = 0

H(w) ≥ 0

▶ F,G,H smooth functions, can be convex and nonconvex

▶ solved with iterative Newton-type algorithms

▶ solved in nonlinear model predictive control
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Class 4: Mathematical programs with Complementarity Constraints
(MPCC)

MPCC

min
w∈Rn

F (w)

s.t. G(w) = 0

H(w) ≥ 0

0 ≤ w1 ⊥ w2 ≥ 0

w = [w⊤
0 , w

⊤
1 , w

⊤
2 ]

⊤ ∈ Rn

▶ more difficult than standard nonlinear programming

▶ feasible set is inherently nonsmooth and nonconvex

▶ powerful modeling concept

▶ requires specialized theory and algorithms (Lectures 5 and 6 on Wednesday)
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Class 5: Mixed-integer programming

Mixed-integer nonlinear program (MINLP)

min
w0∈Rp,w1∈Zq

F (w)

s.t. G(w) = 0

H(w) ≥ 0

w = [w⊤
0 , w

⊤
1 ]

⊤, n = p+ q

▶ inherently nonconvex feasible set

▶ due to combinatorial nature, NP-hard even for linear F,G,H

▶ branch and bound, branch and cut algorithms based on iterative solution of relaxed
continuous problems
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Class 6: Continuous time optimal control problems (OCP)

Continuous-time Optimal Control Problem

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) = fc(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

▶ decision variables x(·), u(·) in infinite
dimensional function space

▶ infinitely many constraints for t ∈ [0, T ]

▶ smooth ordinary differential equations
(ODE)

ẋ(t) = fc(x(t), u(t))

▶ more generally, dynamic model can be
based on
▶ differential algebraic equations (DAE)
▶ partial differential equations (PDE)
▶ stochastic ODE
▶ nonsmooth ODE - (treated on

Tuesday)

▶ OCP can be convex or nonconvex

▶ all or some components of u(t) may take
integer values (mixed-integer OCP)
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Direct optimal control methods solve Nonlinear Programs (NLP)
Treated in detail in the 2nd lecture.

Continuous time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) = fc(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

Direct methods like direct collocation,
multiple shooting first discretize, then
optimize.
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multiple shooting first discretize, then
optimize.

Discrete time OCP (an NLP)

min
x,u

∑N−1
k=0 ℓ(xk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = f(xk, uk)

0 ≥ h(xk, uk), k = 0, . . . , N−1

0 ≥ r(xN )

Variables x = (x0, . . . , xN ) and
u = (u0, . . . , uN−1) can be summarized in
vector w = (x, u) ∈ Rn.
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Nonlinear MPC solves Nonlinear Programs (NLP)

Discrete time NMPC Problem (an NLP)

min
x,u

∑N−1
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Algebraic characterization of unconstrained local optima

Consider the unconstrained problem: minw∈Rn F (w)

First-Order Necessary Condition of Optimality (FONC) (in convex case also sufficient)

w∗ local optimizer ⇒ ∇F (w∗) = 0, w∗ stationary point

Second-Order Necessary Condition of Optimality (SONC)

w∗ local minimizer ⇒ ∇2F (w∗) ⪰ 0

Second-Order Sufficient Conditions of Optimality (SOSC)

∇F (w∗) = 0 and ∇2F (w∗) ≻ 0 ⇒ x∗ strict local minimizer

∇F (w∗) = 0 and ∇2F (w∗) ≺ 0 ⇒ x∗ strict local maximizer

no conclusion can be drawn in the case ∇2F (w∗) is indefinite.
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a stationary point w∗ with ∇F (w∗) = 0 can be a minimizer, a maximizer, or a saddle point
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Optimality conditions - unconstrained

▶ Necessary conditions: find a candidate
point (or to exclude points)

▶ Sufficient conditions: verify optimality
of a candidate point

▶ A minimizer must satisfy SONC, but
does not have to satisfy SOSC
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First-order necessary conditions for equality constrained optimization

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

Lagrangian function: L(w, λ) = F (w)− λ⊤G(w)

Definition (LICQ)

A point w satisfies Linear Independence
Constraint Qualification (LICQ) if

∇G (w) := ∂G(w)
∂w

⊤
is full column rank.

First-order necessary conditions (in convex case also sufficient)

Let F,G in C1. If w∗ is a (local) minimizer, and w∗ satisfies LICQ, then there is a unique
vector λ such that:

∇wL(w∗, λ∗) = ∇F (w∗)−∇G(w∗)λ = 0 dual feasibility

∇λL(w∗, λ∗) = G(w∗) = 0 primal feasibility
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First-order necessary conditions for equality constrained optimization

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

Lagrangian function: L(w, λ) = F (w)− λ⊤G(w)

Definition (LICQ)

A point w satisfies Linear Independence
Constraint Qualification (LICQ) if

∇G (w) := ∂G(w)
∂w

⊤
is full column rank.

First-order necessary conditions (in convex case also sufficient)

Let F,G in C1. If w∗ is a (local) minimizer, and w∗ satisfies LICQ, then there is a unique
vector λ such that:

∇wL(w∗, λ∗) = ∇F (w∗)−∇G(w∗)λ = 0 dual feasibility

∇λL(w∗, λ∗) = G(w∗) = 0 primal feasibility

1. Theory and algorithms for nonlinear programming A. Nurkanović 20/43



The Karush-Kuhn-Tucker (KKT) conditions

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

H(w) ≥ 0

L(w, λ, µ) = F (w)− λ⊤G(w)− µ⊤H(w)

Definition (LICQ)

A point w satisfies LICQ if

[∇G (w) , ∇HA (w)]

is full column rank.

Active set A = {i | Hi(w) = 0}

Theorem (KKT conditions - FONC for constrained optimization)

Let F, G, H be C1. If w∗ is a (local) minimizer and satisfies LICQ, then there are unique
vectors λ∗ and µ∗ such that (w∗, λ∗, µ∗) satisfies:

∇wL (w∗, µ∗, λ∗ ) = 0, µ∗ ≥ 0, dual feasibility

G (w∗) = 0, H (w∗) ≥ 0 primal feasibility

µ∗
iHi(w

∗) = 0, ∀ i complementary slackness
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The complementary slackness condition

▶ complementarity conditions
0 ≤ µ∗ ⊥ H(w∗) ≥ 0

▶ same as min(µ∗, H(w∗)) = 0

▶ zero level set of min is an L-shaped set

Cases:

▶ Hi(w
∗) > 0 then µ∗

i = 0, and Hi(w) is
inactive

▶ µ∗
i > 0 and Hi(w) = 0 then Hi(w) is

strictly active

▶ µ∗
i = 0 and Hi(w) = 0 then then Hi(w) is

weakly active
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▶ same as min(µ∗, H(w∗)) = 0

▶ zero level set of min is an L-shaped set

Cases:

▶ Hi(w
∗) > 0 then µ∗

i = 0, and Hi(w) is
inactive

▶ µ∗
i > 0 and Hi(w) = 0 then Hi(w) is

strictly active

▶ µ∗
i = 0 and Hi(w) = 0 then then Hi(w) is

weakly active
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Some intuitions on the KKT conditions
Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

▶ −∇F is the gravity

▶ µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

▶ ∇H gives the direction of the force and µ
adjusts the magnitude.

▶ active constraint: H (w) = 0, µ > 0

▶ weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

▶ inactive constraint: H (w) > 0, µ = 0

!rF (w)

7rH(w)
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Balance of the forces:

∇L(w, µ) = ∇F (w)−∇H(w)µ = 0

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control
with Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016
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Some intuitions on the KKT conditions
Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

▶ −∇F is the gravity

▶ µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

▶ ∇H gives the direction of the force and µ
adjusts the magnitude.

▶ active constraint: H (w) = 0, µ > 0

▶ weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

▶ inactive constraint: H (w) > 0, µ = 0
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Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control
with Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016
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Some intuitions on the KKT conditions
Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

▶ −∇F is the gravity

▶ µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

▶ ∇H gives the direction of the force and µ
adjusts the magnitude.

▶ active constraint: H (w) = 0, µ > 0

▶ weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

▶ inactive constraint: H (w) > 0, µ = 0
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∇L(w, µ) = ∇F (w)−∇H(w)µ = 0

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control
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Some intuitions on the KKT conditions
Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

▶ −∇F is the gravity

▶ µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

▶ ∇H gives the direction of the force and µ
adjusts the magnitude.

▶ active constraint: H (w) = 0, µ > 0

▶ weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

▶ inactive constraint: H (w) > 0, µ = 0
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Some intuitions on the KKT conditions
Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

▶ −∇F is the gravity

▶ µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

▶ ∇H gives the direction of the force and µ
adjusts the magnitude.

▶ active constraint: H (w) = 0, µ > 0

▶ weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

▶ inactive constraint: H (w) > 0, µ = 0
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Some intuitions on the KKT conditions
Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

▶ −∇F is the gravity

▶ µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

▶ ∇H gives the direction of the force and µ
adjusts the magnitude.

▶ active constraint: H (w) = 0, µ > 0

▶ weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

▶ inactive constraint: H (w) > 0, µ = 0
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Some intuitions on the KKT conditions
Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

▶ −∇F is the gravity

▶ µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

▶ ∇H gives the direction of the force and µ
adjusts the magnitude.

▶ active constraint: H (w) = 0, µ > 0

▶ weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

▶ inactive constraint: H (w) > 0, µ = 0
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Some intuitions on the KKT conditions
Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

▶ −∇F is the gravity

▶ µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

▶ ∇H gives the direction of the force and µ
adjusts the magnitude.

▶ active constraint: H (w) = 0, µ > 0

▶ weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

▶ inactive constraint: H (w) > 0, µ = 0
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Outline of the lecture

1 Basic definitions

2 Some classifications of optimization problems

3 Optimality conditions

4 Nonlinear programming algorithms
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Newton’s method
To solve a nonlinear system, solve a sequence of linear systems

Linearization of F at linearization point w̄

equals

First-order Taylor series at w̄

equals

FL(w; w̄) := F (w̄) +
∂F

∂w
(w̄) (w − w̄)
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Iteration 0

y = F (w)
y = F (wk) + rF (wk)(w ! wk)
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Newton’s method
To solve a nonlinear system, solve a sequence of linear systems

Linearization of F at linearization point w̄

equals

First-order Taylor series at w̄

equals

FL(w; w̄) := F (w̄) +∇wF (w̄)⊤(w − w̄)

Newton’s methods, solve sequence of:

F (wk) +∇F (wk)⊤∆w = 0,

update wk+1 = wk +∆w.
(for continuously differentiable F : Rn → Rn)
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Newton’s method
To solve a nonlinear system, solve a sequence of linear systems

Linearization of F at linearization point w̄

equals

First-order Taylor series at w̄

equals

FL(w; w̄) := F (w̄) +∇wF (w̄)⊤(w − w̄)

Newton’s methods, solve sequence of:

F (wk) +∇F (wk)⊤∆w = 0,

update wk+1 = wk +∆w.
(for continuously differentiable F : Rn → Rn)
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Newton’s method
To solve a nonlinear system, solve a sequence of linear systems

Linearization of F at linearization point w̄

equals

First-order Taylor series at w̄

equals

FL(w; w̄) := F (w̄) +∇wF (w̄)⊤(w − w̄)

Newton’s methods, solve sequence of:

F (wk) +∇F (wk)⊤∆w = 0,

update wk+1 = wk +∆w.
(for continuously differentiable F : Rn → Rn)
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Newton’s method
To solve a nonlinear system, solve a sequence of linear systems

Linearization of F at linearization point w̄

equals

First-order Taylor series at w̄

equals

FL(w; w̄) := F (w̄) +∇wF (w̄)⊤(w − w̄)

Newton’s methods, solve sequence of:

F (wk) +∇F (wk)⊤∆w = 0,

update wk+1 = wk +∆w.
(for continuously differentiable F : Rn → Rn)
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General Nonlinear Program (NLP)

In direct methods, we have to solve the discretized optimal control problem, which is a
Nonlinear Program (NLP)

General Nonlinear Program (NLP)

min
w∈Rn

F (w) s.t.

{
G(w) = 0
H(w) ≥ 0

We first treat the case without inequality constraints

NLP only with equality constraints

min
w∈Rn

F (w) s.t. G(w) = 0
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Lagrange function and optimality conditions

Lagrange function

L(w, λ) = F (w)− λ⊤G(w)

For an optimal solution w∗ there exist multipliers λ∗ such that

Nonlinear root-finding problem

∇wL(w∗, λ∗) = 0
G(w∗) = 0
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Newton’s method on optimality conditions

Use Newton’s method to solve:

∇wL(w∗, λ∗) = 0
G(w∗) = 0 ?

Given an iterate (wk, λk), the linearization reads as:

∇wL(wk, λk) +∇2
wL(wk, λk)∆w −∇wG(wk)∆λ = 0

G(wk) +∇wG(wk)⊤∆w = 0

Due to ∇L(wk, λk) = ∇F (wk)−∇G(wk)λk, this is equivalent to:

∇wF (wk) +∇2
wL(wk, λk)∆w −∇wG(wk)λ+ = 0

G(wk) +∇wG(wk)⊤∆w = 0

with the shorthand λ+ = λk +∆λ
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Newton Step = Quadratic Program

Conditions
∇wF (wk) +∇2

wL(wk, λk)∆w −∇wG(wk)λ+ = 0
G(wk) +∇wG(wk)⊤∆w = 0

are the KKT optimality conditions of a quadratic program (QP), namely:

Quadratic program

min
∆w∈Rn

∇F (wk)⊤∆w +
1

2
∆w⊤Ak∆w

s.t. G(wk) +∇G(wk)⊤∆w = 0,

with Ak = ∇2
wL(wk, λk)
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Newton’s method

The full step Newton’s Method iterates by solving in each iteration the QP

Quadratic program in Sequential Quadratic Programming (SQP)

min
∆w∈Rn

∇F (wk)⊤∆w +
1

2
∆w⊤Ak∆w

s.t. G(wk) +∇G(wk)⊤∆w = 0,

with Ak = ∇2
wL(wk, λk)

This obtains as solution the step ∆wk and the new multiplier λ+
QP = λk +∆λk

New iterate

wk+1 = wk +∆wk

λk+1 = λk +∆λk = λ+
QP

This is the “full step, exact Hessian SQP method for equality constrained optimization”.
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NLP with inequality constraints

Regard again NLP with both, equality and inequality constraints:

NLP with equality and inequality constraints

min
w∈Rn

F (w) s.t.

{
G(w) = 0
H(w) ≥ 0

Lagrangian function for NLP with equality and inequality constraints

L(w, λ, µ) = F (w)− λ⊤G(w)− µ⊤H(w)
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Optimality conditions with inequalities

Theorem (Karush-Kuhn-Tucker (KKT) conditions)

Let F, G, H be C2. If w∗ is a (local) minimizer and satisfies LICQ, then there are unique
vectors λ∗ and µ∗ such that (w∗, λ∗, µ∗) satisfies:

∇wL (w∗, µ∗, λ∗ ) = 0

G (w∗) = 0

H(w∗) ≥ 0

µ∗ ≥ 0

H(w∗)⊤µ∗ = 0

▶ Last tree complementarity conditions make the KKT conditions nonsmooth

▶ This system cannot be solved by plain Newton’s method. But we can use SQP...
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Sequential Quadratic Programming (SQP)

By Linearizing all functions within the KKT Conditions, and setting λ+ = λk +∆λ and
µ+ = µk +∆µ, we obtain the KKT conditions of a Quadratic Program (QP)

QP with inequality constraints

min
∆w∈Rn

∇F (wk)⊤∆w +
1

2
∆w⊤Ak∆w

s.t. G(wk) +∇G(wk)⊤∆w = 0

H(wk) +∇H(wk)⊤∆w ≥ 0

with Ak = ∇2
wL(wk, λk, µk)

▶ QP solution: ∆wk, λ+
QP, µ+

QP

▶ full step: wk+1 = wk +∆wk, λk+1 = λ+
QP, µ

k+1 = µ+
QP

▶ nonsmooth complementarity conditions resolved at QP level
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Sequential Quadratic Programming (SQP)

By Linearizing all functions within the KKT Conditions, and setting λ+ = λk +∆λ and
µ+ = µk +∆µ, we obtain the KKT conditions of a Quadratic Program (QP)

QP with inequality constraints

min
∆w∈Rn
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1

2
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s.t. G(wk) +∇G(wk)⊤∆w = 0
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with Ak = ∇2
wL(wk, λk, µk)

▶ QP solution: ∆wk, λ+
QP, µ+
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▶ nonsmooth complementarity conditions resolved at QP level
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Interior-point methods
(without equality constraint for lighter notation)

NLP with inequalites

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

KKT conditions

∇F (w)−∇H(w)µ = 0

0 ≤ µ ⊥ H(w) ≥ 0

▶ Main difficulty: nonsmoothness of
complementarity conditions

▶ 4th lecture (Tuesday) will show why Newton’s
method does not work for nonsmooth problems
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Barrier problem in interior-point method

NLP with inequalites

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

Idea: put inequality constraint into objective

Barrier problem

min
w∈Rn

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)

0 0.5 1 1.5 2 2.5 3
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@
(H

i(
w

))

= =5.000

@(Hi(w))
!= log(Hi(w))

τ log(Hi(w)) approximates:

χ(Hi(w)) =

{
0 if Hi(w) ≥ 0

∞ if Hi(w) < 0
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Barrier problem in interior-point method

NLP with inequalites

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

Idea: put inequality constraint into objective

Barrier problem

min
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m∑
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Barrier problem in interior-point method

NLP with inequalites

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

Idea: put inequality constraint into objective

Barrier problem

min
w∈Rn

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)
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Barrier problem in interior-point method

NLP with inequalites

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

Idea: put inequality constraint into objective

Barrier problem

min
w∈Rn

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)
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Barrier problem in interior-point method

NLP with inequalites

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

Idea: put inequality constraint into objective

Barrier problem

min
w∈Rn

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)
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Barrier problem in interior-point method

NLP with inequalites

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

Idea: put inequality constraint into objective

Barrier problem

min
w∈Rn

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)
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Example barrier problem

Example NLP

min
w∈R2

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1
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Example barrier problem

Example NLP

min
w∈R2

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1

Barrier problem

min
w∈R2

0.5w2 − 2− τ log(w + 1)− τ log(1− w) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w

-1

-0.5

0

0.5

1

1.5

2

2.5

3

O
b
je

ct
iv

e

= =1.500
F (w)
F= (w)

1. Theory and algorithms for nonlinear programming A. Nurkanović 35/43
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Example barrier problem

Example NLP
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Primal-dual interior-point method
Alternative interpretation

Barrier problem

min
w∈Rn

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)

KKT conditions (∇Fτ (w) = 0)

∇F (w)− τ

m∑
i−1

1

Hi(w)
∇Hi(w) = 0

Introduce variable µi =
τ

Hi(w)

Smoothed KKT conditions

∇F (w)−∇H(w)⊤µ = 0

Hi(w)µi = τ

(Hi(w) > 0, µi > 0)

Solve nonsmooth system with Newtons’
method
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Primal-dual interior-point method
Alternative interpretation

Barrier problem
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Primal-dual interior-point method

Nonlinear programming problem

min
w∈Rn

s∈RnH

F (w)

s.t. G(w) = 0

H(w)− s = 0

s ≥ 0

Smoothed KKT conditions

Rτ (w, s, λ, µ) =


∇wL(w, λ, µ)

G(w)
H(w)− s

diag(s)µ− τe

 = 0

(s, µ > 0)

e = (1, . . . , 1)

Solve approximately with Newton’s method
for fixed τ

Rτ (w, s, λ, µ) +∇Rτ (w, s, λ, µ)∆z = 0

with z = (w, s, λ, µ)

Line-serach

Find α ∈ (0, 1)

wk+1 = wk + α∆w

sk+1 = sk + α∆s

λk+1 = λk + α∆λ

µk+1 = µk + α∆µ

such that sk+1 > 0, µk+1 > 0

and reduce τ ...
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Summary

▶ Optimization problem come in many variants (LP, QP, NLP, MPCC, MINLP, OCP, ....)

▶ Each problem class be addressed with suitable software.

▶ Lagrangian function, duality, and KKT conditions are important concepts

▶ For convex problems KKT conditions sufficient for global optimality.

▶ Newton-type optimization for NLP solves the nonsmooth KKT conditions via Sequential
Quadratic Programming (SQP) or via the Interior-Point Method.

▶ NLP solvers need to evaluate
first and second order derivatives (e.g. via CasADi).
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Some interesting and important topics not covered today

▶ Duality for convex optimization problems.

▶ First-order methods (gradient descent, stochastic gradient descent, ...).

▶ Solution methods for linear and quadratic programs (active set, interior-point, simplex).

▶ Augmented Lagrangian methods for constrained optimization.

▶ Solution methods for mixed-integer problems (branch and bound, ...)

▶ Computing derivatives via automatic differentiation.

▶ Globalization strategies (linear search vs trust region, merit functions vs filter).

▶ Regularization (convexification of the Hessian, LICQ violation).
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Optimization textbooks

Nonlinear optimization:

▶ Nocedal, Jorge, and Stephen J. Wright, eds. Numerical optimization. New York, NY:
Springer New York, 2006.

▶ Biegler, Lorenz T. Nonlinear programming: concepts, algorithms, and applications to
chemical processes. Society for Industrial and Applied Mathematics, 2010.

Convex optimization:

▶ Boyd, Stephen, and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004. online: https://web.stanford.edu/~boyd/cvxbook/

▶ Rockafellar, R. T., Fundamentals of optimization. Lecture Notes 2007. online:
https://sites.math.washington.edu/~rtr/fundamentals.pdf
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Free online video lectures

Numerical optimization video lectures by Moritz Diehl (highly recommended!):

▶ Videos: https://www.syscop.de/teaching/ws2020/numerical-optimization

▶ Lecture notes: https://publications.syscop.de/Diehl2016.pdf

Lecture notes/slides by Mario Zanon Sébastien Gros

▶ https://mariozanon.wordpress.com/teaching/

numerical-methods-for-optimal-control/

Optimization software:

▶ https://plato.asu.edu/guide.html

▶ https://www.syscop.de/research/software
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References for this lecture

▶ Moritz Diehl, Sébastien Gros. ”Numerical optimal control (Draft),” Lecture notes, 2024.
online: https://www.syscop.de/files/2024ws/NOC/book-NOCSE.pdf

▶ Karmarkar, Narendra. ”A new polynomial-time algorithm for linear programming.” In
Proceedings of the sixteenth annual ACM symposium on Theory of computing, pp.
302-311. 1984.

▶ Dantzig, George B. ”Origins of the simplex method.” In A history of scientific computing,
pp. 141-151. 1990.
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Summary of optimality conditions

Optimality conditions for NLP with equality and/or inequality constraints:

▶ First-Order Necessary Conditions: A local optimizer of a (differentiable) NLP is a KKT
point

▶ Second-Order Sufficient Conditions require positivity of the Hessian in all critical
feasible directions

Nonconvex problem ⇒ a minimizer is not necessarily a global minimizer.
Note: some nonconvex problems may have a unique minimum

Some important practical consequences...

▶ A KKT point may not be a local (global) optimizer
... the lack of equivalence results from a lack of regularity and/or SOSC

▶ A local (global) optimizer may not be a KKT point
... due to violation of constraint qualifications, e.g. LICQ violated
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