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Continuous-time optimal control problems (OCP)

Continuous-time optimal control problem

min
x(·),u(·)

∫ T

0
L(x(t), u(t)) dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

▶ decision variables x(·), u(·) in infinite
dimensional function space

▶ infinitely many constraints for t ∈ [0, T ]

▶ smooth ordinary differential equations
(ODE)

ẋ(t) = f(x(t), u(t))

▶ dynamic model can be more general e.g.,
nonsmooth

▶ OCP can be convex or nonconvex
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Classification of optimal control methods

Continuous-Time Optimal Control

Hamilton-Jacobi-
Bellman Equation:

Tabulation in State Space

Indirect Methods, Pontryagin:
Solve Boundary
Value Problem

Direct Methods
Transform into

Nonlinear Program (NLP)

▶ indirect methods: first optimize, then discretize

▶ direct methods: first discretize, then optimize

Figure inspired by Figure 9.2. in Moritz Diehl, Sébastien Gros. ”Numerical optimal control (Draft),” Lecture notes, 2024
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Direct single shooting

▶ discretize controls u(t) ∈ Rnu on a fixed grid 0 = t0 < t1 < . . . < tN = T , and regard
x(t) as depended variables

▶ parametrize controls by q = (q0, . . . , qN−1) ∈ RN ·Nu

▶ use numerical integration and obtain state x(t; q) as function of q
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Direct single shooting

NLP resulting from direct single shooting

min
q∈RN·nu

∫ T

0

L(x(t; q), u(t; q)) dt+ E(x(T ; q))

s.t. 0 ≥ h(x(ti; q), u(ti; q)), i = 1, . . . , N

0 ≥ r(x(T ; q))

▶ This is a standard NLP, can be solved with SQP or interior-point method

▶ Convergence can be difficult for unstable systems
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Numerical example with single shooting

min
x(·),u(·)

∫ 3

0

x(t)2 + u(t)3 dt

s.t. x(0) = x0 (initial value)

ẋ(t) = (1 + x)x+ u, t ∈ [0, 3] (ODE)

−1 ≤ x(t) ≤ 1, t ∈ [0, 3] (path constraint)

−1 ≤ u(t) ≤ 1, t ∈ [0, 3] (path constraint)

x(3) = 0. (terminal constraint)

▶ For (1 + x0)x0 ≥ 1, i.e., x0 ≥ 0.618 uncontrollable growth

▶ Choose N = 15 equidistant control intervals

▶ Initialize with steady state control u(t) = 0

▶ Initial value x0 = 0.05 (for higher value trajectory explodes)

▶ Solve OCP with IPOPT via CasADi
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Numerical example with single shooting: iterations
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Numerical example with single shooting: iterations

0 1 2 3

t

-1

-0.5

0

0.5

1
u
(t

)

0 1 2 3

t

-1

-0.5

0

0.5

1

x
(t

)

2nd iteration

02. Direct methods for smooth nonlinear optimal control A. Nurkanović 7/51



Numerical example with single shooting: iterations
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Numerical example with single shooting: iterations
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Numerical example with single shooting: iterations
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Numerical example with single shooting: iterations
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Numerical example with single shooting: iterations
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Numerical example with single shooting: iterations
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Numerical example with single shooting: iterations
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Direct multiple shooting

▶ discretize controls u(t) ∈ Rnu on a fixed grid 0 = t0 < t1 < . . . < tN = T
▶ parametrize controls by u = (u0, . . . , uN−1) ∈ RN ·nu

▶ numerically solve ODE ẋ(t) = fc(x(t), un) on each [tn, tn+1] with artificial initial value
x(tn) = xn

▶ new degrees of freedom: x = (x0, . . . , xN ) ∈ R(N+1)·nx
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Direct multiple shooting

Continuous time OCP

min
x(·),u(·)

∫ T

0
L(x(t), u(t)) dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

1. Parametrize controls, e.g.
u(t) = un, t ∈ [tn, tn+1].

2. Discretize cost and dynamics via numerical
simulation method

Ld(xn, un) =

∫ tn+1

tn

L(x(t), u(t)) dt.

Replace ẋ = f(x, u) by

xn+1 = ψf (xn, un)

3. Relax path constraints, e.g., evaluate only
at t = tn

0 ≥ h(xn, un), n = 0, . . . N − 1.
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Direct multiple shooting

Continuous time OCP
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xn+1 = ψf (xn, un)

3. Relax path constraints, e.g., evaluate only
at t = tn

0 ≥ h(xn, un), n = 0, . . . N − 1.

Discrete time OCP (an NLP)

min
x,u

∑N−1
k=0 Ld(xk, uk) + E(xN )

s.t. x0 = x̄0

xn+1 = ψf (xn, un)

0 ≥ h(xn, un), n = 0, . . . , N−1

0 ≥ r(xN )

Variables x = (x0, . . . , xN ), and
u = (u0, . . . , uN−1).
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Direct optimal control methods solve Nonlinear Programs (NLP)

Discrete time OCP (an NLP)

min
x,u

∑N−1
k=0 Ld(xk, uk) + E(xN )

s.t. x0 = x̄0

xn+1 = ψf (xn, un)

0 ≥ h(xn, un), n = 0, . . . , N−1

0 ≥ r(xN )

Variables w = (x,u)
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Direct optimal control methods solve Nonlinear Programs (NLP)
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Nonlinear Program (NLP)

min
w∈Rnx

F (w)

s.t. G(w) = 0

H(w) ≥ 0

Obtain larger but sparse
NLP
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Numerical example with multiple shooting: iterations
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Numerical example with multiple shooting: iterations
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Numerical example with multiple shooting: iterations
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5th iteration - converged!
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Single vs multiple shooting: pros and cons

Single shooting: sequential optimization and
simulation:

+ use state-of-the-art ODE/DAE solvers

+ few degrees of freedom even for large
ODE/DAE systems

+ need only initial guess for controls u

- cannot use knowledge of x in initialization

- ODE solution can depend very non-linearly
on u

- unstable systems difficult to treat

- difficult to parallelize

- often used in prototype engineering
implementations

Multiple shooting: simultaneous optimization
and simulation:

+ use state-of-the-art ODE/DAE solvers

- more optimization variables, but fixed
dimension

+ can pass initial guess for controls u

+ can use knowledge of x in initialization

+ usually less nonlinear = faster
convergence)

+ unstable systems easier to treat

+ easy to parallelize

+ used in many great software packages:
MUSCOD-II, ACADO, acados
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Multiple shooting as lifted Newton’s method (1/2)

▶ Just like in our example, it is often observed that multiple shooting converges better and
faster than single shooting.

▶ The multiple shooting discretization leads to more degrees of freedom, and the
“nonlinearity is distributed over the variables”.

▶ This is a manifestation of the lifted Newton’s method, which was studied in: Albersmeyer,
J., & Diehl, M. (2010). The lifted Newton method and its application in optimization.
SIAM Journal on Optimization, 20(3), 1655-1684., PDF:
https://publications.syscop.de/Albersmeyer2010.pdf

▶ To gain more intuition we illustrate this effect on a small root-finding problem.

▶ Careful, it may also happen that lifting makes the situation worse. In multiple shooting,
this is almost never observed.
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Multiple shooting as lifted Newton’s method (2/2)

The problem:

w16 − 2 = 0,

has only one variable and is quite nonlinear.
An equivalent lifted problem, with more
variables but less nonlinear is:

z21 − 2 = 0,

z22 − z1 = 0,

z23 − z2 = 0,

z24 − z3 = 0.

▶ The fist is initialized with w0 = 1.5, the
second with z0i = 1.5, i = 1, . . . , 4.

▶ The lifted formulation is less nonlinear
and Newton’s method converges faster.
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Work flow in smooth direct optimal control
First discretize, then optimize.

Problem formulation OptimizationTime discretization

OCP
In
te
gr
at
or
Multiple shooting

Single shooting

Direct
transcription

NLP

SQP

IPM

OCP = Optimal Control Problem

NLP = Nonlinear Program

SQP = Sequential Quadratic Programming

IPM = Interior-Point Method

Figure inspired by Lecture 1, Numerical Methods for Optimal Control: Introduction, 2022, by Mario Zanon and Sébastien Gros.
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Outline of the lecture

1 Overview of optimal control methods

2 Direct methods

3 Numerical simulation methods

4 Collocation methods
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Ordinary differential equations and controlled dynamical system

Let:
▶ t ∈ R be the time
▶ x(t) ∈ Rnx the differential states
▶ u(t) ∈ Rnu a given control function

▶ denote by ẋ(t) = dx(t)
dt

Ordinary differential equations

▶ Let F : R× Rnx × Rnx × Rnu → Rnx be a function such that the Jacobian ∂F
∂ẋ (·) is

invertible. The system of equations:

F (t, ẋ(t), x(t), u(t)) = 0,

is called an Ordinary Differential Equation (ODE).

▶ Given a function f : R× Rnx × Rnu → Rnx then a system of equations:

ẋ(t) = f(t, x(t), u(t)) (1)

is called an explicit ODE.
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Sufficient conditions for existence and uniqueness

Theorem (Picard-Lindelöf / Cauchy–Lipschitz )

An initial value problem in ODE

ẋ(t) = f(t, x(t), u(t)), t ∈ [0, T ],

x(0) = x0

▶ with given initial state x0, and controls u(t),
▶ f(t, x(t), u(t)) = f̂(t, x(t)) is continuous in t and Lipschitz continuous in x

has a unique solution x(t), t ∈ [0, T ].

▶ f is Lipschitz if ∥f(x)− f(y)∥ ≤ L∥x− y∥
▶ smooth ODEs modeling physics usually Lipschitz
▶ if f is only continuous, existence but not uniqueness can be guaranteed, e.g.

ẋ(t) =
√
|x(t)|, x(0) = 0, solutions: x(t) = 0 and x(t) = t2

4
▶ Conditions are only sufficient, ODEs with a non-Lipschitz r.h.s. can have unique solutions

A collection of results in: Agarwal, Ratan Prakash, Ravi P. Agarwal, and V. Lakshmikantham. Uniqueness and

nonuniqueness criteria for ordinary differential equations. Vol. 6. World Scientific, 1993.
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Basic definitions of numerical simulation

▶ IVPs have only in special cases a closed form solution

▶ Instead, compute numerically a solution approximation x̃(t) that approximately satisfies:

˙̃x(t) ≈ f(t, x̃(t), u(t)), t ∈ [0, T ]

x̃(0) = x(0) = x0

▶ Recursively generate solution approximation xn := x̃(tn) ≈ x(tn) at N discrete time
points 0 = t0 < t1 < . . . < tN = T

▶ Integration interval [0, T ] split into subintervals [tn, tn+1] where h = tn+1 − tn
▶ h - integration step size can be constant, different for every interval, or adaptive
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Single step numerical simulation as discrete time system

Single step abstract integration method

xn+1 = ϕf (xn, zn, un),

0 = ϕint(xn, zn, un), n = 0, . . . , N − 1.

▶ ϕf - state transition - compute next integration step

▶ ϕint - internal computations, e.g., stages of a Runge-Kutta method (next section)

▶ zn collects all interval variables of the integration method
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0 = ϕint(xn, zn, un), n = 0, . . . , N − 1.

▶ ϕf - state transition - compute next integration step

▶ ϕint - internal computations, e.g., stages of a Runge-Kutta method (next section)

▶ zn collects all interval variables of the integration method

Example (Explicit Euler):

xn+1 = xn + hzn,

0 = f(xn, un)− zn.
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Integration error

Local and global error

▶ Local integration error at tn+1:

e(tn+1) = ∥x(tn+1)− ϕf (x(tn), zn, u0)∥.

▶ Global integration error at t = T :

E(T ) = ∥x(T )− xN∥.

▶ Global error - accumulation of local
errors
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Convergence and integrator order

Integrator convergence and accuracy

▶ Convergence

lim
h→0

E(T ) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Higher order p:
▶ less, but more expensive steps for

same accuracy
▶ in total fewer r.h.s. evaluations for

same accuracy
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Integrator convergence and accuracy
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Stability and convergence

Integrator convergence and accuracy

▶ Convergence

lim
h→0

E(T ) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Stability: damping of errors, does it
work for h≫ 0?

▶ If integrator is unstable, it does not
converge and has p = 0, unless h very
small
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Stability and convergence
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Classes of numerical simulation methods

General Linear Methods

Multi Step

Linear Multi-Step
Methods

Explicit Implicit

Single Step

Runge-Kutta
Methods

Explicit Implicit
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Runge-Kutta method definition
Unknowns are derivatives at stage points

Definition (Runge-Kutta method in differential form)

Let ns be the number of stages. Given the matrix A ∈ Rns×ns with the entries ai,j for
i, j = 1, . . . , ns, and the vectors b, c ∈ Rns . Let tn,i = tn + cih. The system of equations:

kn,i = f(tn,i, xn + h

ns∑
j=1

ai,jkn,j , un), i = 1, . . . , ns

xn+1 = xn + h

ns∑
i=1

bikn,i

is called a ns-stage Runge-Kutta (RK) method in the differential form.
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t2

x2

t3

x3
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Runge-Kutta method definition
Unknowns are derivatives at stage points

Definition (Runge-Kutta method in differential form)

Let ns be the number of stages. Given the matrix A ∈ Rns×ns with the entries ai,j for
i, j = 1, . . . , ns, and the vectors b, c ∈ Rns . Let tn,i = tn + cih. The system of equations:
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ai,jkn,j , un), i = 1, . . . , ns

xn+1 = xn + h

ns∑
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bikn,i

is called a ns-stage Runge-Kutta (RK) method in the differential form.

Time grid Butcher tableau Data Variables
h, tn, tn,i ai,j , bi, ci xn, un, f(·) xn+1, kn,i
i = 1, . . . , ns i, j = 1, . . . , ns i = 1, . . . , ns
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Runge-Kutta method examples

Explicit Runge-Kutta 4

kn,1 = f(tn, xn)

kn,2 = f(tn +
h

2
, xn + h

kn,1
2

)

kn,3 = f(tn +
h

2
, xn + h

kn,2
2

)

kn,4 = f(tn + h, xn + hkn,3)

xn+1 = xn + h(
1

6
kn,1 +

2

6
kn,2 +

2

6
kn,3 +

1

6
kn,4)

▶ All kn,i can be found by explicit function
evaluations.

Implicit Euler Method

kn,1 = f(tn+1, xn + hkn,1)

xn+1 = xn + hkn,1

▶ All kn,1 is found implicitly by
solving
kn,1 − f(tn, xn + hkn,1) = 0.
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Explicit vs implicit Runge-Kutta methods
The Butcher tableau

Explicit Runge-Kutta method

0
c2 a2,1
...

...
...

. . .

cns
ans,1 ans,2 . . . ans,ns−1

b1 b2 . . . bns−1 bns

▶ ai,j ̸= 0 only for j < i

▶ Explicit function evaluations to
compute stage values and next step

▶ Computationally cheap

▶ Order: p = ns if ns ≤ 4 and p < ns
otherwise

Implicit Runge-Kutta method

c1 a1,1 a1,2 . . . a1,ns−1 a1,ns

c2 a2,1 a2,2 . . . a2,ns−1 a2,ns

...
...

...
. . .

...
...

cns
ans,1 ans,2 . . . ans,ns−1 ans,ns

b1 b2 . . . bns−1 bns

▶ Requires solving nonlinear rootfinding
problem with Newton’s method

▶ Expensive but good for stiff systems

▶ Order: p = 2ns, p = 2ns − 1, ...

▶ Famous representative: collocation
methods - treated next!
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Butcher tableau, six examples

8.2 Numerical Simulation 505

101 102 103 104 105 106

function evaluations

10�12

10�9

10�6

10�3

100

E(2⇡)

explicit Euler
Heun
RK4

(a) Accuracy vs. function evaluations.

�1

0

1

2

x1

exact explicit Euler Heun RK4

0 ⇡/2 ⇡ 3⇡/2 2⇡
t

�1

0

1
x2

(b) Simulation results for M = 32.

Figure 8.2: Performance of different integration methods.

It is important to note that on the right-hand side of each row, only
those ki values are used that are already computed. This property
holds for every explicit integration method, and makes it possible to
explicitly evaluate the first s equations one after the other to obtain
all values k1, . . . , ks for the summation in the last line. One usually
summarizes the coefficients of a Runge-Kutta method in what is known
as a Butcher tableau (after John C. Butcher, born 1933) given by

c1

c2 a21

c3 a31 a32
...

. . .
. . .

cs as1 · · · as,s�1

b1 b2 · · · bs

The Butcher tableau of three popular RK methods is stated below

Euler

0
1

Heun

0
1 1

1/2 1/2

RK4

0
1/2 1/2
1/2 0 1/2

1 0 0 1
1/6 2/6 2/6 1/6

Note that the bi coefficients on the bottom always add to one. An
interesting fact is that an s-stage explicit Runge-Kutta method can never
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510 Numerical Optimal Control

0.5

1.0

x1

k1

k2
x1(⌧)

ex1(⌧)

t t + c1h t + c2h t + h
⌧

�1.0

�0.5

0.0

ẋ1
k1

k2
ẋ1(⌧)

ėx1(⌧)

Figure 8.3: Polynomial approximation xe1(t) and true trajectory
x1(t) of the first state and its derivative, computed at
the first integration step of the GL4 collocation method
applied to the stiff ODE from Example 8.4. Note that the
accuracy of the polynomial at the end of the interval is
significantly higher than in the interior. The result of this
first GL4 step can also be seen on the right side of Fig-
ure 8.4.

time derivatives is visualized, for a collocation method with s = 2 col-
location points (GL4) applied to the ODE from Example 8.4. Note that
in this example, ẋe(⌧ ;k1, k2, . . . , ks) is a polynomial of order one, i.e., an
affine function, and its integral, xe(⌧ ;x,k1, k2, . . . , ks), is a polynomial
of order two.

The Butcher tableau of three popular collocation methods is

Implicit
Euler

1 1
1

Midpoint
rule (GL2)

1/2 1/2
1

Gauss-Legendre
of order 4 (GL4)

1/2�
p

3/6 1/4 1/4�
p

3/6
1/2+

p
3/6 1/4+

p
3/6 1/4

1/2 1/2

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

0
c2 a21

c3 a31 a32

...
...

. . .

cs as1 as2 · · ·
b1 b2 · · · bs

)

c1 a11 · · · a1s

c2 a21 · · · a2s

...
...

...
cs as1 · · · ass

b1 · · · bs
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Differential-Algebraic Equations (DAE) - semi-explicit form

Extend the ODE by algebraic equations g and algebraic states z:

ẋ(t) = f(t, x(t), u(t), z(t))

0 = g(t, x(t), z(t), u(t))

▶ differential states: x(t) ∈ Rnx

▶ algebraic states: z(t) ∈ Rnz

▶ control input: u(t) ∈ Rnu

▶ Source problems: conservation laws, fast dynamics: ϵż(t) = g(x(t), z(t), u(t))), ϵ→ 0.

▶ The usual case is index one, i.e. the Jacobian ∂g
∂z is invertible. If this is not the case,

replace g(x, z, u) = 0 by dd

dtd
g = 0, until it is (higher index).
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Runge-Kutta methods for differential algebraic equations
Unknowns are derivatives of states ki,j and algebraic states zi,j at stage points

Definition (RK method for index 1 DAEs)

Let ns be the number of stages. Given the matrix A ∈ Rns×ns with the entries ai,j for
i, j = 1, . . . , ns, and the vectors b, c ∈ Rns . Let tn,i = tn + cih.

kn,i = f(tn,i, xn + h
∑ns

j=1 ai,jkn,j , zn,i, un), i = 1, . . . , ns

0 = g(tn,i, xn + h
∑ns

j=1 ai,jkn,j , zn,i, un), i = 1, . . . , ns

xn+1 = xn + h
∑ns

i=1 bikn,i,

0 = g(tn+1, xn+1, zn+1, un).

is called a ns-stage Runge-Kutta (RK) method for DAEs of index 1. Here zn,i, i = 1, . . . , ns

are the stage values for the algebraic variables and zn+1 is the approximation of z(tn+1).

t
t0

x0

t1

x1

t2

x2

t3

x3

t0,1 t0,2 . . . t0,ns

k1,1 k1,2 . . . k1,ns

z1,1 z1,2 . . . z1,ns
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Runge-Kutta methods for differential algebraic equations
Unknowns are derivatives of states ki,j and algebraic states zi,j at stage points

Definition (RK method for index 1 DAEs)

Let ns be the number of stages. Given the matrix A ∈ Rns×ns with the entries ai,j for
i, j = 1, . . . , ns, and the vectors b, c ∈ Rns . Let tn,i = tn + cih.

kn,i = f(tn,i, xn + h
∑ns

j=1 ai,jkn,j , zn,i, un), i = 1, . . . , ns

0 = g(tn,i, xn + h
∑ns

j=1 ai,jkn,j , zn,i, un), i = 1, . . . , ns

xn+1 = xn + h
∑ns

i=1 bikn,i,

0 = g(tn+1, xn+1, zn+1, un).

is called a ns-stage Runge-Kutta (RK) method for DAEs of index 1. Here zn,i, i = 1, . . . , ns

are the stage values for the algebraic variables and zn+1 is the approximation of z(tn+1).

Time grid Butcher tableau Data Variables
h, tn, tn,i ai,j , bi, ci xn, un, f(·) xn+1, kn,i, zn+1, zn,i
i = 1, . . . , ns i, j = 1, . . . , ns i = 1, . . . , ns
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Outline of the lecture

1 Overview of optimal control methods

2 Direct methods

3 Numerical simulation methods

4 Collocation methods
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Collocation

Main ideas:

▶ Approximate x(t) on t ∈ [tn, tn+1] with a polynomial qn(t) of degree ns

▶ Pick ns distinct numbers: 0 ≤ c1 < c2 < . . . < cns
≤ 1

▶ Define collocation points tn,i = tn + cih , i = 1, . . . , ns

▶ The polynomial qn(t) ≈ x(t) satisfies the ODE on the collocation points:

Collocation equations

qn(tn) = xn

q̇n(tn + cih) = f(tn + cih, qn(tn + cih), un), i = 1, . . . , ns

▶ Polynomial of degree ns: ns + 1 coefficient and ns + 1 equations

▶ Next value - simple evaluation: xn+1 = qn(tn+1)
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Collocation - how to implement it?

How to parameterize qn(t)?

Two common (equivalent) choices

1. Find q̇n(t) interpolating polynomial through state derivatives kn,1, . . . , kn,ns at
collocation points tn,i, i = 1, . . . , ns (this lecture).

2. Find interpolating polynomial qn(t) through xn (at tn) and state values xn,1, . . . , xn,ns

at collocation points tn,i, i = 1, . . . , ns (in Appendix).

▶ qn(t) is recovered via:

qn(t) = xn +

∫ t

tn

q̇n(τ ; kn,1, . . . , kn,ns
)dτ.

▶ with:

q̇n(t) = ℓ1

( t− tn
h

)
kn,1 + ℓ2

( t− tn
h

)
kn,2 + · · ·+ ℓns

( t− tn
h

)
kn,ns

=

ns∑
i=1

ℓi

( t− tn
h

)
f(tn + ci, qn(tn + cih), u0)︸ ︷︷ ︸

=kn,i
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The Lagrange polynomials ℓi(τ)

Lagrange polynomial basis

ℓi(τ) =

ns∏
j=1,i̸=j

τ − cj
ci − cj

.

Properties:

ℓi(cj) =

{
1 if j = i

0 if j ̸= i

ns∑
i=1

ℓi(t) = 1
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Collocation - how to implement it - continued

▶ Evaluate qn(t) at collocation points

qn(tn + cih) = xn +

∫ tn+cih

tn

q̇n(τ ; kn,1, . . . , kn,ns
)dτ

= xn +

∫ tn+cih

tn

ns∑
j=1

ℓj

(τ − tn
h

)
kn,jdτ

= xn + h

ns∑
j=1

kn,j

∫ ci

0

ℓj(σ)dσ︸ ︷︷ ︸
:=ai,j

= xn + h

ns∑
j=1

kn,jai,j

Similarly qn(t) evaluated at tn+1 = tn + h:

qn(tn + h) = xn + h

ns∑
i=1

kn,i

∫ 1

0

ℓi(σ)dσ︸ ︷︷ ︸
:=bi

= xn + h

ns∑
i=1

kn,ibi
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All collocation methods are implicit Runge-Kuta method

Collocation equations

qn(tn) = xn (initial value)

q̇n(tn + cih) = f(tn + ci, qn(tn + cih), un), i = 1, . . . , ns (stage eqs.)

xn+1 = qn(tn+1) (next value)

▶ We arrived at the implicit RK equations in differential form

▶ Unknowns: xn+1 ∈ Rnx and zn = (kn,1, . . . , kn,ns
) ∈ Rnsnx

▶ (ns + 1)nx equations and (ns + 1)nx variables - solve via Newton’s methods
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Collocation - visualization

▶ Choice of points c1, . . . , cns
determines properties of method.

▶ Gauss-Legendre p = 2ns, Radau-IIA p = 2ns − 1 good for stiff systems, Lobatto family
p = 2ns − 2.
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Visualization inspired by Leo Simpson’s talk at the European control conference 2023
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Collocation - visualization

▶ Choice of points c1, . . . , cns
determines properties of method.

▶ Gauss-Legendre p = 2ns, Radau-IIA p = 2ns − 1 good for stiff systems, Lobatto family
p = 2ns − 2.

0h 1h 2h 3h

t

0

0.2

0.4

0.6

0.8

1

x
(t

)

Gauss Legendre, ns = 2, N = 3

10!2 10!1

h

10!10

10!5

100

E
(T

)

GL4
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ẋ(t) = −0.5x(t)2 − x(t) + sin(10t), x(0) = 1

Visualization inspired by Leo Simpson’s talk at the European control conference 2023

02. Direct methods for smooth nonlinear optimal control A. Nurkanović 37/51
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ẋ(t) = −0.5x(t)2 − x(t) + sin(10t), x(0) = 1

Visualization inspired by Leo Simpson’s talk at the European control conference 2023

02. Direct methods for smooth nonlinear optimal control A. Nurkanović 37/51
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Collocation - visualization

▶ Choice of points c1, . . . , cns determines properties of method.

▶ Gauss-Legendre p = 2ns, Radau-IIA p = 2ns − 1 good for stiff systems, Lobatto family
p = 2ns − 2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
(t

)

Gauss Legendre, ns = 3, N = 100

10!2 10!1

h

10!10

10!5

100

E
(T

)

GL4
GL6
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Direct collocation in optimal control

Variables xn+1 ∈ Rnx and zn = (kn,1, . . . , kn,ns
) ∈ Rnsnx

Collocation equations

xn+1 = xn + h

ns∑
i=1

kn,ibi (next value)

kn,1 = f(tn + c1h, xn + h

ns∑
j=1

kn,ja1,j , un) (stage Eq. 1)

...

kn,ns = f(tn + cnsh, xn + h

ns∑
j=1

kn,jans,j , un), (stage Eq. ns)

▶ Use to discretize optimal control problem
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Continious time OCP into Nonlinear Programs (NLP)

Continuous time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

▶ Direct methods: first discretize,
then optimize

1. Parametrize controls, e.g.
u(t) = un, t ∈ [tn, tn+1].

2. Discretize cost and dynamics via collocation

Ld(xn, un) =

∫ tn+1

tn

Lc(x(t), u(t)) dt.

Replace ẋ = f(x, u) by

xn+1 = ϕf (xn, zn, un),

0 = ϕint(xn, zn, un).

3. Relax path constraints, e.g., evaluate only
at t = tn

0 ≥ h(xn, un), n = 0, . . . N − 1.
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Replace ẋ = f(x, u) by

xn+1 = ϕf (xn, zn, un),

0 = ϕint(xn, zn, un).

3. Relax path constraints, e.g., evaluate only
at t = tn

0 ≥ h(xn, un), n = 0, . . . N − 1.

Discrete time OCP (an NLP)

min
x,z,u

∑N−1
k=0 Ld(xk, uk) + E(xN )

s.t. x0 = x̄0

xn+1 = ϕf (xn, zn, un)

0 = ϕint(xn, zn, un)

0 ≥ h(xn, un), n = 0, . . . , N−1

0 ≥ r(xN )

Variables x = (x0, . . . , xN ), z = (z0, . . . , zN )
and u = (u0, . . . , uN−1).
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Direct optimal control methods solve Nonlinear Programs (NLP)

Discrete time OCP (an NLP)

min
x,z,u

∑N−1
k=0 Ld(xk, uk) + E(xN )

s.t. x0 = x̄0

xn+1 = ϕf (xn, zn, un)

0 = ϕint(xn, zn, un)

0 ≥ h(xn, un), n = 0, . . . , N−1

0 ≥ r(xN )

Variables w = (x, z,u)
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Discrete time OCP (an NLP)

min
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k=0 Ld(xk, uk) + E(xN )

s.t. x0 = x̄0

xn+1 = ϕf (xn, zn, un)

0 = ϕint(xn, zn, un)
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Variables w = (x, z,u)

Nonlinear Program (NLP)

min
w∈Rnx

F (w)

s.t. G(w) = 0

H(w) ≥ 0

Obtain large and sparse
NLP
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Direct optimal control methods solve Nonlinear Programs (NLP)
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Work flow in smooth direct optimal control
First discretize, then optimize.

Problem formulation OptimizationTime discretization

OCP
In
te
gr
at
or
Multiple shooting

Single shooting

Direct
transcription

NLP

SQP

IPM

OCP = Optimal Control Problem

NLP = Nonlinear Program

SQP = Sequential Quadratic Programming

IPM = Interior-Point Method

Figure inspired by Lecture 1, Numerical Methods for Optimal Control: Introduction, 2022, by Mario Zanon and Sébastien Gros.
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Direct collocation vs direct multiple shooting

Direct collocation NLP

min
x,z,u

∑N−1
k=0 Ld(xk, uk) + E(xN )

s.t. x0 = x̄0

xn+1 = ϕf (xn, zn, un)

0 = ϕint(xn, zn, un)

0 ≥ h(xn, un), n = 0, . . . , N−1

0 ≥ r(xN )

▶ Variables w = (x, z,u)

▶ Only fixed number of integration steps

▶ Internal computations of integrator done
by optimizer

▶ More variables, but sparser

Multiple shooting NLP

min
x,u

∑N−1
k=0 Ld(xk, uk) + E(xN )

s.t. x0 = x̄0

xn+1 = ψf (xn, un)

0 ≥ h(xn, un), n = 0, . . . , N−1

0 ≥ r(xN )

▶ Variables w = (x,u)

▶ Can use adaptive integrators

▶ Internal computations of integrator
hidden from optimizer

▶ Less variables
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Summary

▶ Numerical simulation methods used to solve ODEs approximately.

▶ Integration accuracy order and stability play key roles.

▶ All collocation methods are IRK methods, the converse is not true.

▶ Choice of discretization method has huge influence on efficacy and reliability of NLP
solution.

▶ Best choice is problem dependent and often requires lot of care.
▶ Many good software packages exist: CasADi, pyomo.DAE, acados, MUSCOD-II, ACADO,

ForcesPRO, IPOPT, ... (the list is far from complete)
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Reading recommendations

Direct optimal control:

▶ James B. Rawlings, David Q. Mayne, and Moritz Diehl. Model predictive control: theory,
computation, and design. Vol. 2. Madison, WI: Nob Hill Publishing, 2017. - Chapter 8.
Online: https://sites.engineering.ucsb.edu/~jbraw/mpc/

▶ Biegler, Lorenz T. Nonlinear programming: concepts, algorithms, and applications to
chemical processes. Society for Industrial and Applied Mathematics, 2010.

▶ Moritz Diehl, Sébastien Gros. ”Numerical optimal control (Draft),” Lecture notes, 2014.
Online: https://www.syscop.de/files/2024ws/NOC/book-NOCSE.pdf

Optimal control, MPC vs reinforcement learning:

▶ Recht, B. (2019). A tour of reinforcement learning: The view from continuous control.
Annual Review of Control, Robotics, and Autonomous Systems, 2(1), 253-279.

▶ Bertsekas, D. P. (2024). Model Predictive Control and Reinforcement Learning: A Unified
Framework Based on Dynamic Programming. arXiv preprint arXiv:2406.00592.
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Free online video lectures

Numerical optimal control video lectures by Moritz Diehl (highly recommended!):

▶ Videos:
https://www.syscop.de/teaching/ss2020/numerical-optimal-control-online

▶ Lecture notes: https://www.syscop.de/files/2024ws/NOC/book-NOCSE.pdf

Lecture notes/slides by Mario Zanon Sébastien Gros

▶ https://mariozanon.wordpress.com/teaching/

numerical-methods-for-optimal-control/

Optimal control software:

▶ CasADi - general purpose modeling and optimization - https://web.casadi.org/get

▶ acados - fast embedded model predictive control -
https://github.com/acados/acados

▶ https://www.syscop.de/research/software
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References used for this lecture

▶ Moritz Diehl, Sébastien Gros. ”Numerical optimal control (Draft),” Lecture notes, 2024.

▶ James B. Rawlings, David Q. Mayne, and Moritz Diehl. Model predictive control: theory,
computation, and design. Vol. 2. Madison, WI: Nob Hill Publishing, 2017.

▶ Gerhard Wanner, Ernst Hairer. ”Solving ordinary differential equations II.” Vol. 375. New
York: Springer Berlin Heidelberg, 1996.
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Direct collocation via state values

To discretize an optimal control problem with direct collocation we replace the continuous-time
dynamics

ẋ(t) = f(x(t), u(t)),

by the discrete-time collocation equations.

▶ split the control horizon [0, T ] into N control intervals with a uniform time discretization
grid tn = nh, n = 0, . . . , N , h = T

N

▶ state values are xn = x(tn)

▶ control discretization: u(t) = un, t ∈ [tn, tn+1], n = 1, . . . , N .

▶ on every control interval the state trajectory is approximated by polynomials qn(t),
n = 1, . . . , N .

Next, on each control interval [tn, tn+1], we compute the coefficients of these polynomials to
ensure that the ODE is exactly satisfied at the collocation points tn,i = tn + hci, i = 1, . . . , ns,
where, ns is the number of stages.
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Direct collocation via state values

▶ choice of 0 = c0 < c1 < . . . < cns
≤ 1 determines the accuracy and stability properties of

the resulting method

▶ popular choices for ci are the Radau IIA or Gauss-Legendre points.

▶ Previously treated: interpolating polynomial q̇n(t) through the state derivatives
kn,1, . . . , kn,ns .

▶ Here, finding the interpolating polynomial qn(t) through the initial value xn and state
values xn,1, . . . , xn,ns at the stage points.

▶ We use of the Lagrangian polynomial basis. Using these time points, we define a basis for
our polynomials:

ℓi(τ) =

ns∏
j=0, i ̸=j

τ − cj
ci − cj

, i = 0, . . . , ns. (2)

▶ Remark: in contrast to using state derivatives kn,i, the counter starts from i = 0, as we
include the point c0 = 0, since we interpolate through xn.
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Direct collocation via state values

We approximate the state trajectory on [tn, tn+1] by a linear combination of the basis functions:

qn(t) =

ns∑
j=0

ℓj

(
t− tn
h

)
xn,j . (3)

By differentiation, we obtain an approximation of the time derivative at each collocation point:

q̇n(tn,i) =
1

h

ns∑
j=0

ℓ̇j(ci)xn,j :=
1

h

ns∑
j=0

Cj,i xn,j , i = 0, . . . , ns. (4)

The collocation equations must satisfy the ODE at every collocation point tn,i:

q̇n(tn,i) = f(qn(tn,i), un), i = 1, . . . ns

That is:

1

h

ns∑
j=0

Cj,i xn,j = f(xn,i, un), i = 1, . . . ns. (5)
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Collocation: next step and cost integral approximation

The expression for the state at the end of an interval reads as:

xn+1 =

ns∑
i=0

ℓi(1)xn,i :=

ns∑
i=0

Di xn,i (6)

Moreover, using the obtained approximation qn(t) we can integrate the stage cost∫ T

0

L(x(t), u(t))dt,

over every control interval and obtain a formula for quadratures:∫ tn+1

tn

ns∑
j=0

ℓj

(
t− tn
h

)
L(xn,j , un) dt = h

ns∑
j=0

∫ 1

0

ℓj(t) dt L(xn,j , un) := h

ns∑
j=0

Bj L(xn,j , un).

(7)
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Runge-Kutta method definition
Unknowns are states at stage points, cannot treat case of c1 = 0

Definition (Runge-Kutta method in integral form)

Let ns be the number of stages. Given the matrix A ∈ Rns×ns with the entries ai,j for
i, j = 1, . . . , ns, and the vectors b, c ∈ Rns . Let tn,i = tn + cih. The system of equations:

xn,i = xn + h

ns∑
j=1

ai,jf(tn,i, xn,j , un), i = 1, . . . , ns

xn+1 = xn + h

ns∑
i=1

bif(tn,i, xn,i, un),

is called a ns-stage Runge-Kutta (RK) method in integral form.

Time grid Butcher tableau Data Variables
h, tn, tn,i ai,j , bi, ci xn, un, f(·) xn+1, xn,i
i = 1, . . . , ns i, j = 1, . . . , ns i = 1, . . . , ns
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t
t0

x0

t1

x1

t2

x2

t3

x3

t0,1 t0,2 . . . t0,ns

x1,1 x1,2 . . . x1,ns
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