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Outline of the lecture

1 What are hybrid and nonsmooth systems?

2 Phenomena specific to nonsmooth systems

3 Time discretization of nonsmooth systems

4 Mathematical description of nonsmooth systems
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Introduction

Definition

Hybrid systems are systems that involve both continuous and discrete dynamics.

Discrete decisions can be:

1.) Internal, state depended - modeled with nonsmooth differential equations (our focus)

2.) External, time depended, on/off decisions - modeled with integer variables

Internal switches:

▶ Arise whenever first principles are coupled with if-else statements.

▶ From macroscopic empirical laws (Coulomb friction, contacts, flow reversal, ...).
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Difference between hybrid automata and nonsmooth systems - Example 1
There are many different ways to model the same

Nonsmooth dynamical system

q̈ = −g + λ

0 ≤ q ⊥ λ ≥ 0

if q(t) = 0, v(t−) and ≤ 0,

then v(t+) = −ϵrv(t−)

Hybrid dynamical system

q̈ = −q

q(t) = 0, v(t−) ≤ 0

v(t+) = −ϵrv(t
−)
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Difference between hybrid automata and nonsmooth systems - Example 2

Nonsmooth dynamical system

[
q̈1
q̈2

]
=

[
u1 + λ1

−g + u2 + λ2

]
0 ≤ q1 ⊥ λ1 ≥ 0

0 ≤ q2 ⊥ λ2 ≥ 0

if qi(t) = 0 and vi(t
−) ≤ 0,

then vi(t
+) = 0 i = 1, 2

Hybrid dynamical system

q̈=

[
u1

−g+u2

]
w = 1

q̈=

[
u1 + λ1
−g+u2

]
0 = q1
w = 2

q̈=

[
u1

−g+u2+λ2

]
0 = q2
w = 3

q̈=

[
u1+λ1

−g+u2+λ2

]
0 = q
w = 4

q1(t) = 0, v1(t
−) ≤ 0

v1(t
+) = 0

q̈1 > 0

q
2 (t)

=
0
, v

2 (t −
)
≤

0

v
2 (t

+
)
=

0q̈ 2
>

0

q
2 (t)

=
0
, v

2 (t −
)
≤

0

v
2 (t

+
)
=

0q̈ 2
>

0

q1(t) = 0, v1(t
−) ≤ 0

v1(t
+) = 0

q̈2 > 0

q(t) =
0, v(t −

) <
0

v(t +
) =

0
q̈
>
0

▶ Nonsmooth: easy to write down and do computations with, hard to analyze.

▶ Automaton: harder to write down and do computations, easier to analyze.
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Classification of hybrid systems w.r.t. what triggers a switch
Nonsmooth/hybrid systems experience switches and jumps

Type of switches

Depending on how the discrete events or switches are triggered, we distinguish between:

1.) internal switches: triggered implicitly, depending on the systems’ differential state

2.) external switches: triggered explicitly, independent of the differential state
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Switch can happen only when x(t) reaches some S = {x ∈ Rn | ψ(x) = 0}
3. Introduction to nonsmooth differential equations and hybrid systems A. Nurkanović 5/44
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Switch can happen anytime - no matter where x(t) is in the state space
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Classification nonsmooth dynamical systems
Classification of NonSmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

NSD1
non-differentiable RHS

NSD2
discontinuous RHS

NSD3
state dependent jump
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Continuous activation
functions in the RHS

ẋ = 1 +max(0, x)

Continuous non-diff. ODEs

ẋ = 1 + |x|
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Classification nonsmooth dynamical systems
Classification of NonSmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

Continuous activation
functions in the RHS
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Piecewise smooth systems

ẋ = fi(x), if x ∈ Ri

i = 1, . . . ,m

Projected dynamical systems

ẋ = PTC(x)(f(x))

NSD2
discontinuous RHS

Rigid bodies with impacts
and friction

q̇ = v

M(q)v̇ = fv(q, v) + Jn(q)λn

0 ≤ λn ⊥ fc(q) ≥ 0

(state jump law for v)

NSD3
state dependent jump
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Outline of the lecture
4. What is so special about nonsmootness?

1 What are hybrid and nonsmooth systems?

2 Phenomena specific to nonsmooth systems

3 Time discretization of nonsmooth systems

4 Mathematical description of nonsmooth systems
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Infinitely many switches in finite time - Zeno’s phenomenon

The bouncing ball example - NSD3

q̇(t) = v(t)

m v̇(t) = −g
v(t+) = −ϵrv(t−), if v(t−) ≤ 0 and q(t) = 0

q(0) = 0, v(0) > 0

▶ Coefficient of restitution ϵr ∈ [0, 1], e.g.,
ϵr = 0.9.

▶ t1 = 2v(0)
g , t2 = t1 +

2ϵrv(0)
g , . . ..

▶ ∆k+1 = tk+1 − tk =
2 ϵkr v(0)

g .

▶ Since ϵr < 1 it follows that
limk→∞ ∆k = 0.
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Infinitely many switches in finite time - Zeno’s phenomenon

A Filippov system - NSD2

ẋ1 ∈ −sign(x1) + 2sign(x2)

ẋ2 ∈ −2sign(x1)− sign(x2)

▶ Real world system do not experience
Zeno.

▶ By modeling and design one wants to
avoid this behavior.

▶ Might complicate the numerical
computations sometimes.

Zoom in: trajectories spiral down.
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Reduced systems dimensions and sliding modes

A sliding mode example

ẋ ∈ −sign(x)

▶ System evolves on surface of
discontinuity.

▶ Need to define meaningful dynamics
(treated later in detail).

▶ Reduced system dimension.

▶ Solution not unique backwards in time.

▶ Dynamics switch from ODE to DAE of
higher index.
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Nonunique solutions

Nonunique solutions example

ẋ ∈ sign(x), x(0) = 0

▶ In nonsmooth systems examples with
nonunique solutions easily constructed.

▶ It may not be clear what numerical
algorithms do.

▶ To be avoided in controller design.
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Nonunique solutions

Nonunique solutions example
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Stability and instability due to switches and jumps
Example from [Branicky, 1998]

Unstable piecewise affine systems

ẋ = f(x) :=

{
A1x, if x1x2 ≤ 0

A2x, if x1x2 > 0

with

A1 =

[
−1 1
−10 −1

]
, A2 =

[
−1 10
−1 −1

]

▶ First and third quadrant: ẋ = A1x.

▶ Second and fourth quadrant: ẋ = A2x.

▶ Nonsmooth systems can have stable
modes but still be overall unstable.

ẋ = A1x - stable
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Numerical chattering in sliding mode examples

Explicit Euler for nonsmooth systems

xk+1 = xk − h sign(xk)

▶ In presence of discontinuities numerical
solutions can chatter around a
discontinuity.

▶ Decreasing the step size might worsen
things.

▶ Even sophisticated codes may struggle.

▶ Method converges - but qualitative
behavior is not good.

▶ Nonsmooth implicit methods resolve the
issue (Lecture 4).
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Time discretization methods for nonsmooth ODEs

Approaches to discretize and simulate a nonsmooth ODE

1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)

2) smoothing and penalty methods (low accuracy, easy to implement)

3) event-driven, switch-detecting, active-set methods (cannot handle Zeno, high accuracy)
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Integration order plots for different simulation methods
Compute global integration error E(T ) using different strategies

Tutorial example

ẋ =

{
A1x, ψ(x) < 0,

A2x, ψ(x) > 0

with A1 =

[
1 2π

−2π 1

]
, A2 =

[
1 −2π
2π 1

]
,

ψ(x) = ∥x∥22 − 1, x(0) = (e−1, 0),

Compute solution approximation:

1. with fixed step size IRK methods (time-stepping),

2. with sophisticated adaptive step size methods
(time-stepping),

3. with switch detecting integrators,

4. via smoothed approximations.
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1. Integration order plots fixed step size Implicit Runge-Kutta methods
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h
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E
x
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)

ODE integrated with IRK Radau II-A

O(h)

O(h2)

Radau IIA 1
Radau IIA 3
Radau IIA 5
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h

10!10

10!5

100
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x
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ODE integrated with IRK Gauss-Legendre

O(h)

O(h2)

GL2
GL4
GL6

Simulation time T = 1, no switch yet, high accuracy
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1. Integration order plots fixed step size Implicit Runge-Kutta methods
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ODE integrated with IRK Radau II-A
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Radau IIA 1
Radau IIA 3
Radau IIA 5
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)

ODE integrated with IRK Gauss-Legendre

O(h)

O(h2)

GL2
GL4
GL6

Simulation time T = π/2, switch happened, low accuracy

3. Introduction to nonsmooth differential equations and hybrid systems A. Nurkanović 15/44



1. Integration order plots fixed step size Implicit Runge-Kutta methods
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ODE integrated with IRK Radau II-A
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Radau IIA 1
Radau IIA 3
Radau IIA 5
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ODE integrated with IRK Gauss-Legendre

O(h)

O(h2)

GL2
GL4
GL6

The nonsmoothness leads to severe order reduction, all methods have O(h) accuracy.
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2. Integration order plots adaptive step size methods

10!10 10!5 100

hmin
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ode45

ode15s

ode23

ode89

O(h)
O(h2)

Very small step size necessary to achieve high accuracy even with very sophisticated methods.
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2. Integration order plots adaptive step size methods
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Step size small around switch - many switches = very slow integration.
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3. Adaptive step size methods with switch detection
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O(h)
O(h2)

Switch detected explicitly - high accuracy properties recovered.
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3. Adaptive step size methods with switch detection
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No extremely small step sizes around the switch.
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4. Accuracy order plots for smoothing
Error dominated by σ

Smooth approximation parameterized by σ

ẋ = (1− ασ(x))A1x+ ασ(x)A2x, ασ(x) =
1

2

(
1− tanh

(ψ(x)
σ

))
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O(h2)
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Smoothed sliding mode example
Error dominated by σ

Smooth approximation parameterized by σ = 10−5

ẋ = −sign(x)
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x
(t
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Small σ makes system very stiff - small step sizes.
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Smoothed sliding mode example
Error dominated by σ

Smooth approximation parameterized by σ = 10−5

ẋ = − tanh
(x
σ

)
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Small σ makes system very stiff - small step sizes.
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Outline of the lecture

1 What are hybrid and nonsmooth systems?

2 Phenomena specific to nonsmooth systems

3 Time discretization of nonsmooth systems

4 Mathematical description of nonsmooth systems
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Classification nonsmooth dynamical systems
Classification of NonSmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

NSD1
non-differentiable RHS

NSD2
discontinuous RHS

NSD3
state dependent jump
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Classification nonsmooth dynamical systems
Classification of NonSmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

Continuous activation
functions in the RHS

ẋ = 1 +max(0, x)

Continuous non-diff. ODEs

ẋ = 1 + |x|

NSD1
non-differentiable RHS

NSD2
discontinuous RHS

NSD3
state dependent jump
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Classification nonsmooth dynamical systems
Classification of NonSmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

Continuous activation
functions in the RHS

ẋ = 1 +max(0, x)

Continuous non-diff. ODEs

ẋ = 1 + |x|

NSD1
non-differentiable RHS

Piecewise smooth systems

ẋ = fi(x), if x ∈ Ri

i = 1, . . . ,m

Projected dynamical systems

ẋ = PTC(x)(f(x))

NSD2
discontinuous RHS

NSD3
state dependent jump
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Continuous activation
functions in the RHS

ẋ = 1 +max(0, x)

Continuous non-diff. ODEs

ẋ = 1 + |x|

NSD1
non-differentiable RHS

Piecewise smooth systems

ẋ = fi(x), if x ∈ Ri

i = 1, . . . ,m

Projected dynamical systems

ẋ = PTC(x)(f(x))

NSD2
discontinuous RHS

Rigid bodies with impacts
and friction

q̇ = v

M(q)v̇ = fv(q, v) + Jn(q)λn

0 ≤ λn ⊥ fc(q) ≥ 0

(state jump law for v)

NSD3
state dependent jump
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Differential-Algebraic Equations (DAE) - semi-explicit form

Extend the ODE by algebraic equations g and algebraic states z:

ẋ(t) = f(x(t), u(t), z(t))

0 = g(x(t), z(t), u(t))

▶ differential states: x(t) ∈ Rnx
▶ algebraic states: z(t) ∈ Rnz
▶ control input: u(t) ∈ Rnu
▶ no z(0) needed, implicitly determined via 0 = g(x0, z(0), u(0))

Simplified view: introduce nz new variables z(t), and nz new algebraic equations
g(x, z, u) = 0 to compute them.
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Modeling of nonsmoothness with convex optimization

Ordinary differential inclusion/equation

ẋ(t) ∈ f(x(t), u(t), z(x(t)))

nonsmoothness modeled via z(x):

Convex optimization problem

z(x) ∈ argmin
z

F (z, x)

s.t. H(z, x) ≥ 0
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Modeling of nonsmoothness with convex optimization

Ordinary differential inclusion/equation

ẋ(t) ∈ f(x(t), u(t), z(x(t)))

nonsmoothness modeled via z(x):

Dynamic complementary system

ẋ(t) = f(x, u, z)
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Modeling of nonsmoothness with convex optimization

Ordinary differential inclusion/equation

ẋ(t) ∈ f(x(t), u(t), z(x(t)))

nonsmoothness modeled via z(x):

Dynamic complementary system = nonsmooth DAE

ẋ(t) = f(x, u, z)

0 = ∇zF (z, x)−∇zH(z, x)µ

0 = min(µ,H(z, x))
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Motivating examples: ODEs with a discontinuous right-hand side
Crossing a discontinuity

Consider the ODE

ẋ = 2− sign(x)

More explicitly:

ẋ =

{
3, if x < 0

1, if x > 0
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Motivating examples: ODEs with a discontinuous right-hand side
Sliding mode (simpler)

Consider the ODE

ẋ = −sign(x)

And let

sign(x) =


−1, if x < 0

0, if x = 0

1, if x > 0

Then...

ẋ =


1, if x < 0

0, if x = 0

−1, if x > 0
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Motivating examples: ODEs with a discontinuous right-hand side
Sliding mode

Consider the ODE

ẋ = −sign(x) + 0.5 sin(t)

And let

sign(x) =


−1, if x < 0

0, if x = 0

1, if x > 0

We have for some t > t∗ that x(t) = 0
and ẋ(t) = 0

That is sign(0) = 0 = 0.5 sin(t)

Something went wrong...
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Motivating examples: ODEs with a discontinuous right-hand side
Sliding mode - fixed

Consider the ODE

ẋ ∈ −sign(x) + 0.5 sin(t)

And let

sign(x) ∈


{−1}, if x < 0

[−1, 1], if x = 0

{1}, if x > 0

We have for some t > t∗ that x(t) = 0 and
ẋ(t) = 0

That is sign(0) = [−1, 1] ∋ 0.5 sin(t)

It works with set valued extensions.
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Filippov’s convexification for ODEs with discontinuous right-hand side

Filippov differential inclusion

Replace ODE with a discontinuous right-hand
side

ẋ(t) = f(x(t))

by

ẋ(t) ∈ FF(x(t))

where FF(x) : Rnx → P(Rnx) is defined as:

FF(x) :=
⋂
ϵ>0

⋂
µ(N)=0

convf(x+ ϵB(x) \N)

▶ f(x) continuous at x: FF(x)={f(x)}

▶ at discontinuity: convex combination of
neighboring vector fields and ignore what
is at the discontinuity
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Piecewise smooth systems (PSS)

Regard discontinuous right-hand side, piecewise smooth on disjoint open regions Ri ⊂ Rnx

Discontinuous ODE (NSD2)

ẋ = fi(x, u), if x ∈ Ri, i = 1, . . . , nf

R1 = {x ∈ Rnx | ψ1(x) > 0, ψ2(x) > 0, . . . ψnψ (x) > 0}
R2 = {x ∈ Rnx | ψ1(x) > 0, ψ2(x) > 0, . . . ψnψ (x) < 0}

...

Rnf = {x ∈ Rnx | ψ1(x) < 0, ψ2(x) < 0, . . . ψnψ (x) < 0}

▶ zero level sets of ψi(x) = 0 - region boundaries

▶ nψ smooth scalar switching functions define
nf = 2nψ regions
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Filippov convexification for piecewise smooth systems

The “structured” discontinuous right-hand side in PSS enables to define convex multipliers θi
to define the convex set FF(x, u)

Filippov Differential Inclusion

ẋ ∈ FF(x, u) :=
{ nf∑
i=1

fi(x, u) θi

∣∣∣ nf∑
i=1

θi = 1,

θi ≥ 0, i = 1, . . . nf ,

θi = 0, if x /∈ Ri

}
Aleksei F. Filippov
(1923-2006)

image source: wikipedia

▶ for interior points x ∈ Ri nothing changes: FF(x, u) = {fi(x, u)}
▶ Provides meaningful generalization on region boundaries

E.g. on R1 ∩R2 both θ1 and θ2 can be nonzero
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Stewart’s representation
Introduced in [Stewart, 1990], used in [Nurkanović et al., 2024]

Assume sets Ri given by Ri =
{
x ∈ Rnx

∣∣gi(x) < minj ̸=i gj(x)
}

▶ How to obtain it from Ri = {x ∈ Rnx | ψ1(x) > 0, ψ2(x) > 0, . . . ψnψ (x) > 0}?
▶ How to find the functions gi(x)?

Definition of regions via switching functions

R1 = {x ∈ Rnx | ψ1(x) > 0, ψ2(x) > 0, . . . ψnψ (x) > 0}
R2 = {x ∈ Rnx | ψ1(x) > 0, ψ2(x) > 0, . . . ψnψ (x) < 0}

...

Rnf = {x ∈ Rnx | ψ1(x) < 0, ψ2(x) < 0, . . . ψnψ (x) < 0}

ψ(x) :=
[
ψ1(x) ψ2(x) . . . ψnψ (x)

]⊤ ∈ Rnψ

Sign matrix

S =


1 1 . . . 1
1 1 . . . −1
...

...
. . .

...
−1 −1 . . . −1


Definition via i-th row Si,•:

Ri = {x ∈ Rnx | Si,•ψ(x) > 0}

g(x) = −Sψ(x)
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Examples for finding switching function

▶ In Stewart’s representation sets Ri given by Ri =
{
x ∈ Rnx

∣∣gi(x) < minj ̸=i gj(x)
}

▶ From switching functions ψ(x) ∈ Rnψ obtain Stewart’s indicator functions g(x) ∈ Rnf via
g(x) = −Sψ(x)

Example 1 - single switching function

R1 = {x ∈ Rnx | ψ(x) > 0}
R2 = {x ∈ Rnx | ψ(x) < 0}

S =

[
1
−1

]
g(x) =

[
−ψ(x)
ψ(x)

]

Example 2 - two switching function

ψ(x) = (ψ1(x), ψ2(x))

S =


1 1
1 −1
−1 1
−1 −1



g(x) =


−ψ1(x)− ψ2(x)
−ψ1(x) + ψ2(x)
ψ1(x)− ψ2(x)
ψ1(x) + ψ2(x)


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Filippov’s convexification

Switched ODE not well-defined on region boundaries ∂Ri.
Replace ODE by differential inclusion, using convex combination of neighboring vector fields.

Filippov differential inclusion

ẋ ∈ FF(x, u) :=
{ nf∑
i=1

fi(x, u) θi

∣∣∣ nf∑
i=1

θi = 1, θi≥0, i = 1, . . . , nf , θi = 0, if x /∈ Ri∪∂Ri
}

▶ For interior points x ∈ Ri nothing changes:
FF(x, u) = {fi(x, u)}.

▶ Provides meaningful generalization on region boundaries.
E.g. on ∂R1 ∩ ∂R2 both θ1 and θ2 can be nonzero.

The unit simplex.
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From Filippov to dynamic complementarity systems
Using Stewart’s reformulation [Stewart, 1990] and the KKT conditions of the parametric linear program.

Ri = {x ∈ Rn | gi(x) < min
j ̸=i

gj(x)}.

Linear programming representation

ẋ = F (x, u) θ

with θ ∈ argmin
θ̃∈Rnf

g(x)⊤θ̃

s.t. 0 ≤ θ̃

1 = e⊤θ̃

F (x, u) := [f1(x, u), . . . , fnf(x, u)] ∈ Rnx×nf

g(x) := [g1(x), . . . , gnf (x)]
⊤ ∈ Rnf

e := [1, 1, . . . , 1]⊤ ∈ Rnf
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ẋ = F (x, u) θ

with θ ∈ argmin
θ̃∈Rnf

g(x)⊤θ̃
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F (x, u) := [f1(x, u), . . . , fnf(x, u)] ∈ Rnx×nf

g(x) := [g1(x), . . . , gnf (x)]
⊤ ∈ Rnf

e := [1, 1, . . . , 1]⊤ ∈ Rnf

Replace the LP by its optimality conditions.

Dynamic complementarity system (DCS)

ẋ = F (x, u) θ (1a)

0 = g(x)− λ− eµ (1b)

0 ≤ θ ⊥ λ ≥ 0 (1c)

1 = e⊤θ (1d)

▶ µ ∈ R and λ ∈ Rnf Lagrange multipliers.

▶ (1c) ⇔ min{θ, λ} = 0 ∈ Rnf
▶ Together, (1b), (1c), (1d) determine the

(2nf + 1) variables (θ, λ, µ) uniquely.

3. Introduction to nonsmooth differential equations and hybrid systems A. Nurkanović 33/44



Example: continuity of multipliers in different switching cases

Different switching cases

1. Crossing a surface of discontinuity, ẋ(t) ∈ 2− sign(x(t)),

2. Sliding mode, ẋ(t) ∈ −sign(x(t)) + 0.2 sin(5t),

3. Leaving sliding mode ẋ(t) ∈ −sign(x(t)) + t.

4. Spontaneous switch, ẋ(t) ∈ sign(x(t)),

0 1 2
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0

1

2

0 1 2
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0 1 2
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4. Spontaneous switch, ẋ(t) ∈ sign(x(t)),
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Projected dynamical systems - the projection operator

Regard convex set K. The Euclidean projection is defined as the following convex optimization
problem:

y = PK(x) := argmin
z

1

2
(x− z)⊤(x− z)

s.t. z ∈ K.

K

y = x ∈ K

K

x /∈ K

y

∥x− y∥
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The tangent cone to a set

Definition (Tangent cone)

The tangent cone at x ∈ C is defined as the set:

TC(x) = {d ∈ Rn | ∃{xk} ⊂ C, {tk} ⊂ R≥0 : lim
k→∞

tk = 0, lim
k→∞

xk = x, lim
k→∞

xk − x

tk
= d}

▶ assume that the set C (not necessarily convex) is finely
defined, C = {x ∈ Rnx | ci(x) ≥ 0, i = 1, . . . ,m}

▶ assume ∇ci(x), i = 1, . . . ,m linearly indepedent, LICQ
hold.

▶ then, TC(x) = {d ∈ Rnx | ∇ci(x)⊤d ≥ 0,∀i ∈ A(x)}
(convex polyhedral), where A(x) = {i | ci(x) = 0}.

x

x1

x2

x3

xk

TC(x)

C

d
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Projected Dynamical Systems (PDS)
Introduced in 1970s by Claude Henry [Henry, 1972, Henry, 1973], Equivalences:
[Brogliato et al., 2006, Serea, 2003, Heemels et al., 2000]

Projected dynamical system (NSD2)

ẋ(t) = PTC(x(t))f(x(t), u(t))

x(0) ∈ C

Features of PDS:

▶ state stays within
C = {x ∈ Rnx | c(x) ≥ 0} for all
time

▶ derivative may be discontinuous
on the boundary of C (NSD2)
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▶ state stays within
C = {x ∈ Rnx | c(x) ≥ 0} for all
time

▶ derivative may be discontinuous
on the boundary of C (NSD2)

Example trajectory of PDS

x(0)

x(t)

c(x)=0

x1

x2
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Projected Dynamical Systems (PDS) as DCS

Projected dynamical system (NSD2)

ẋ(t) = PTC(x(t))(f(x(t), u(t)))

x(0) ∈ C

The KKT conditions of y = PTC(x)(f(x, u)):

y(t) = f(x(t), u(t)) +∇c(x(t))λ(t)
0 ≤ ∇c(x(t))⊤y(t)︸ ︷︷ ︸

= d
dt c(x(t))

⊥ λ(t) ≥ 0

▶ if ci(x) > 0, then λi = 0 (∇ci(x) does not
contribute to tangent cone)

▶ if ci(x) = 0, and stays active, then
d
dtc(x(t)) ≥ 0

Gradient complementarity system (GCS)

ẋ(t) = f(x(t), u(t)) +∇c(x(t))λ(t)
0 ≤ c(x(t)) ⊥ λ(t) ≥ 0

1 2 3 4 5 6 7 8 9 10
t

0

0.5

1 x1(t)
x2(t)
6(t)

▶ λ(t) - discontinuous w.r.t. time.

▶ x(t), c(x(t)) - continuous w.r.t. time.
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NSD3 state jump example: bouncing ball

Bouncing ball with state x = (q, v):

q̇ = v, mv̇ = −mg, if q > 0

v(t+) = −0.9 v(t−), if q(t−) = 0 and v(t−) < 0

Time plot of bouncing ball trajectory:

Phase plot of bouncing ball trajectory:

Question: could we transform NSD3 systems into (easier) NSD2 systems?
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Three ideas:

1. mimic state jump by auxiliary dynamic system ẋ = faux(x) on prohibited region

2. introduce a clock state t(τ) that stops counting when the auxiliary system is active

3. adapt speed of time, dt
dτ = s with s ≥ 1, and impose terminal constraint t(T ) = T
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The time-freezing reformulation

Augmented state (x, t) ∈ Rn+1 evolves in
numerical time τ . Augmented system is
nonsmooth, of NSD2 type:

d

dτ

[
x
t

]
=



s

[
f(x)

1

]
, if c(x) ≥ 0

[
sfaux(x)

0

]
, if c(x) < 0

▶ During normal times, system and clock
state evolve with adapted speed s ≥ 1.

▶ Auxiliary system dx
dτ = faux(x) mimics

state jump while time is frozen, dt
dτ = 0.

3. Introduction to nonsmooth differential equations and hybrid systems A. Nurkanović 41/44



Time-freezing for bouncing ball example

Evolution of physical time (clock state)
during augmented system simulation
(s = 1).

We can recover the true solution by plotting
x(τ) vs. t(τ) and disregarding ”frozen pieces”.
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Example of a time-freezing optimal control problem

Time-freezing tracking
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Summary

▶ State depended switches and jumps (internal) are qualitatively different from integer
controls (external).

▶ Nonsmooth systems exhibit rich behavior not seen in smooth systems.

▶ Accurate smooth approximation jeopardize the performance of smooth solvers and,

▶ ... behave numerically as nonsmooth systems

▶ Different classes of numerical methods for time discretization.

▶ There are many mathematical formalism to treat nonsmoothness.

▶ Often, the nonsmooth part is expressed as the solution to a parametric convex problem.
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Recommended reading

▶ Stewart, D. E. Dynamics with Inequalities: impacts and hard constraints. SIAM, 2011.

▶ Brogliato, B., and Tanwani, A. Dynamical systems coupled with monotone set-valued
operators: Formalisms, applications, well-posedness, and stability. Siam Review 62, 1
(2020), 3–129.

▶ Acary, V., and Brogliato, B. Numerical methods for nonsmooth dynamical systems:
applications in mechanics and electronics. Springer, Science and Business Media, 2008

▶ Facchinei, F., and Pang, J.-S. Finite-dimensional variational inequalities and
complementarity problems, vol. 1-2. Springer-Verlag, 2003.

▶ Nurkanović, Armin. ”Numerical methods for optimal control of nonsmooth dynamical
systems.” PhD diss., Dissertation, Universität Freiburg, 2023, 2023.
https://publications.syscop.de/Nurkanovic2023f.pdf

▶ Aubin, J. P., and Cellina, A. Differential Inclusions: Set-Valued Maps and Viability Theory.
Springer-Verlag, 1984.

▶ Smirnov, G. V. Introduction to the Theory of Differential Inclusions, vol. 41. American
Mathematical Soc., 2002.
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Cited references II

Henry, C. (1973).
An existence theorem for a class of differential equations with multivalued right-hand side.
J. Math. Anal. Appl, 41(1):179–186.
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Interpretation of the DCS multipliers

Dynamic complementarity system

ẋ = F (x, u) θ

0 = gi(x)− λi − µ, i = 1, . . . , nf

0 ≤ θ ⊥ λ ≥ 0

1 = e⊤θ

▶ If x ∈ Ri, then θi > 0, λi = 0 (from
complementarity)

▶ λi = gi(x)− µ (from ∇xL(x, λ, µ) = 0)

▶ µ = minj gj(x) (from definition of Ri)

▶ λi = gi(x)−minj gj(x) continuous functions!

▶ At switch λi = λj = 0 =⇒ gi(x)− gj(x) = 0
(region boundary)
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The active set of the DCS

Dynamic complementarity system

ẋ = F (x, u) θ

0 = gi(x)− λi − µ, i = 1, . . . , nf

0 ≤ θ ⊥ λ ≥ 0

1 = e⊤θ

DAE with fixed I

ẋ = FI(x, u) θI

0 = gI(x)− µe,

1 = e⊤θI

▶ Locally well-behaved smooth
ODE or DAE

Active set

I(x) :=
{
i | gi(x) = min

j∈J
gj(x)

}
=

{
i | θi > 0

}

R1

R2

R3 R4

x1

x2

x3

x4

I(x1) = {2}, I(x2) = {1, 2}, I(x3) = {1, 3}
I(x4) = {1, 2, 3, 4}
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Properties of the DCS
Sufficient conditions for the uniqueness of the solution

DAE with fixed I

ẋ = FI(x, u) θI (2a)

0 = gI(x)− µe, (2b)

1 = e⊤θI (2c)

Given |I| ≥ 1, define the matrix

MI(x) = ∇gI(x)⊤FI(x, u) ∈ R|I|×|I|.

Proposition

Suppose that for a fixed active set I(x(t)) = I for t ∈ [0, T ], it holds that the matrix MI(x(t))
is invertible and e⊤MI(x(t))

−1e ̸= 0 for all t ∈ [0, T ]. Given the initial value x(0), then the
DAE (2) has a unique solution for all t ∈ [0, T ].

Proof. Index reduction and implicit function theorem.
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Differential inclusions

A very general class of nonsmooth dynamical systems is obtained by replacing the right-hand
side of a smooth ODE with a set.

Differential Inclusions (DI)

The following equations is called a differential inclusion:

ẋ(t) ∈ F (t, x(t)) for almost all t ∈ [0, T ], (3)

Here F : R× Rnx → P(Rnx) is a set-valued map which assigns to any point in time t and
x ∈ Rnx a set F (t, x) ⊆ Rnx . An element y ∈ F (t, x(t)) for a fixed (t, x(t)) is called a
selection.
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Outer and inner semi-continuous set-valued functions

Definition (OSC, ISC, continuity)

A set-valued function F (·) is outer-semi continuous (OSC) (resp. inner semi-continuous (ISC))
at x0 ∈ X if for every ϵ > 0 there exists a δ > 0 such that F (x) ⊂ F (x0) + ϵB(0) (resp.
F (x0) ⊂ F (x) + ϵB(0)) for all x ∈ x0 + δB(0). It is called continuous at x0 if it both OSC and
ISC at this point.

0 1 2
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Existence of solutions to differential inclusions

Theorem (Existence of solution, Theorem 4, p. 101 in Aubin, J. P., and Cellina, A., 1994 )

Regard the initial value problem related to the DI (3) with the initial value x(0) = x0. Suppose
that the function F : [0, T ]× Rnx → P(Rnx) satisfies the following conditions:.

i) ∥y∥ ≤ C(t)(1 + ∥x∥) for all x and y ∈ F (t, x), where C(·) is an integrable function,

ii) F (t, ·) is outer semi-continuous for all t,

iii) the set F (t, x) is nonempty and closed convex set for all t and x,

Then there exists an absolutely continuous solution x(·) to this initial value problem.
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Variational inequalities

Definition

Let K ⊆ Rn be a closed convex set and F : Rn → Rn.
A variational inequality, denoted by VI(K,F ), is the
problem of finding x ∈ Rn such that

x ∈ K, F (x)⊤(y − x) ≥ 0, for all y ∈ K.

The set of solutions to this problem is denoted by
SOL(K,F ).

▶ x ∈ K is a solution of VI(K,F ) iff either
F (x) = 0 or F (x) forms a non-obtuse angle with
every vector y − x for all y ∈ K

▶ NK(x) = {v ∈ Rn | v⊤(y − x) ≤ 0, for all y ∈
K}, VI(K,F ) is the same as: 0 ∋ F (x) +NK(x)

x1, x3 and x5 are solutions, x2 and x4
are not
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Differential variational inequalities

Definition (Differential variational inequalities)

Given an initial value x(0) = x0, a Differential Variational Inequality (DVI) is the problem of
finding functions x : [0, T ] → Rnx and z : [0, T ] → Rnz such that

ẋ(t) = f(t, x(t), z(t)), (4a)

z(t) ∈ K, for almost all t, (4b)

0 ≤ (ẑ − z(t))⊤F (t, x(t), z(t)), for all ẑ ∈ K and for almost all t. (4c)

▶ DVI can be easily cast into differential inclusions

▶ Denote the set of all solutions, parameterized by x(t), of the VI (4c) by
SOL(F (t, x(t), ·),K).

ẋ(t) ∈ f(t, x(t),SOL(F (t, x(t), ·),K)), x(0) = x0.
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Dynamic complementarity systems

Definition (Dynamic complementarity systems)

Given an initial value x(0) = x0, a dynamic complementarity system is the problem of finding
functions x : [0, T ] → Rnx and z : [0, T ] → Rnz such that

ẋ(t) = f(t, x(t), z(t)), x(0) = x0,

0 ≤ z(t) ⊥ F (t, x(t), z(t)) ≥ 0, for almost all t,

▶ Discrete-time counterpart: nonlinear complementarity problems (e.g. KKT conditions of
an NLP)

▶ Computationally very useful as NCPs can often be solved efficiently

▶ Found in nonsmooth mechanics: complementarity between gap function and normal
contact forces

▶ Filippov systems can be casted into DCS (next lecture)

▶ DI ⊃ DVI ⊃ DCS ⊃ ODE.

3. Introduction to nonsmooth differential equations and hybrid systems A. Nurkanović 56/44



Relating CCP to VIs

Proposition (Proposition 1.1.3. in Facchinei and Pang 2003)

Let K be a closed convex cone. A vector x ∈ Rn is a solution to VI(K,F ) if and only if it is a
solution to the cone complementarity problem:

K ∋ x ⊥ F (x) ∈ K∗, (5)

where this compact notation means that x ∈ K,F (x) ∈ K∗ and F (x)⊤x = 0.

Proof. Let x be a solution to the VI(K,F ). On one hand, since K is a cone, setting
y = 0 ∈ K we have from x ∈ K, F (x)⊤(y − x) ≥ 0, for all y ∈ K, that F (x)⊤x ≤ 0. On
the other hand, from the definition of a cone x ∈ K it follows that 2x ∈ K. Again, from the VI
and setting y = 2x we obtain that F (x)⊤x ≥ 0. Therefore, F (x)⊤x = 0. We further exploit
that F (x)⊤x ≥ 0, i.e., we can see that F (x)⊤(y − x) ≥ 0 implies that F (x)⊤y ≥ 0 for all
y ∈ K, which is equivalent to F (x) ∈ K∗. Thus we have proven that x solves also (5).
Conversely, if x solves (5), we have from the definition that F (x)⊤y ≥ 0 for all y ∈ K and
F (x)⊤x = 0. Subtracting these relations we obtain that the VI holds.
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