3. Introduction to nonsmooth differential equations and hybrid systems

Armin Nurkanović

Systems Control and Optimization Laboratory, University of Freiburg, Germany

Winter School on Numerical Methods for Optimal Control of Nonsmooth Systems École des Mines de Paris February 3-5, 2025, Paris, France

universitätfreiburg

- 1 What are hybrid and nonsmooth systems?
- 2 Phenomena specific to nonsmooth systems
- 3 Time discretization of nonsmooth systems
- 4 Mathematical description of nonsmooth systems

Definition

Hybrid systems are systems that involve both continuous and discrete dynamics.

Definition

Hybrid systems are systems that involve both continuous and discrete dynamics.

Discrete decisions can be:

- 1.) Internal, state depended modeled with nonsmooth differential equations (our focus)
- 2.) External, time depended, on/off decisions modeled with integer variables

Definition

Hybrid systems are systems that involve both continuous and discrete dynamics.

Discrete decisions can be:

- 1.) Internal, state depended modeled with nonsmooth differential equations (our focus)
- 2.) External, time depended, on/off decisions modeled with integer variables

Internal switches:

- ► Arise whenever first principles are coupled with *if-else* statements.
- From macroscopic empirical laws (Coulomb friction, contacts, flow reversal, ...).

Difference between hybrid automata and nonsmooth systems - Example

There are many different ways to model the same

Nonsmooth dynamical system

$$\begin{split} \ddot{q} &= -g + \lambda \\ 0 &\leq q \perp \lambda \geq 0 \\ \text{if } q(t) &= 0, \ v(t^{-}) \text{ and } \leq 0, \\ \text{then } v(t^{+}) &= -\epsilon_{\mathrm{r}} v(t^{-}) \end{split}$$

Hybrid dynamical system

4

6

8

$$q(t) = 0, v(t^{-}) \leq 0$$

$$\overrightarrow{q} = -q$$

$$v(t^{+}) = -\epsilon_{r}v(t^{-})$$

A. Nurkanović

Nonsmooth dynamical system

$$\ddot{q}_1 \\ \ddot{q}_2 \end{bmatrix} = \begin{bmatrix} u_1 + \lambda_1 \\ -g + u_2 + \lambda_2 \end{bmatrix}$$

$$0 \le q_1 \perp \lambda_1 \ge 0$$

$$0 \le q_2 \perp \lambda_2 \ge 0$$

$$\text{if } q_i(t) = 0 \text{ and } v_i(t^-) \le 0$$

$$\text{ then } v_i(t^+) = 0 \ i = 1, 2$$

Hybrid dynamical system

Nonsmooth: easy to write down and do computations with, hard to analyze.

Automaton: harder to write down and do computations, easier to analyze.

Classification of hybrid systems w.r.t. what triggers a switch

Nonsmooth/hybrid systems experience switches and jumps

Type of switches

Depending on how the discrete events or switches are triggered, we distinguish between: 1.) **internal switches**: triggered implicitly, depending on the systems' differential state

Switch can happen only when x(t) reaches some $S = \{x \in \mathbb{R}^n \mid \psi(x) = 0\}$

Classification of hybrid systems w.r.t. what triggers a switch

Nonsmooth/hybrid systems experience switches and jumps

Type of switches

Depending on how the discrete events or switches are triggered, we distinguish between:

- 1.) internal switches: triggered implicitly, depending on the systems' differential state
- 2.) external switches: triggered explicitly, independent of the differential state

Switch can happen anytime - no matter where x(t) is in the state space

Classification nonsmooth dynamical systems

Classification of NonSmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

Classification of NonSmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

Continuous activation functions in the RHS

 $\dot{x} = 1 + \max(0, x)$

Continuous non-diff. ODEs

 $\dot{x} = 1 + |x|$

NSD1 non-differentiable RHS

Classification nonsmooth dynamical systems

Classification of NonSmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

Continuous activation functions in the RHS

 $\dot{x} = 1 + \max(0, x)$

Continuous non-diff. ODEs

 $\dot{x} = 1 + |x|$

NSD1 non-differentiable RHS Piecewise smooth systems

$$\dot{x} = f_i(x), \text{ if } x \in R_i$$

 $i = 1, \dots, m$

Projected dynamical systems

 $\dot{x} = \mathcal{P}_{\mathcal{T}_C(x)}(f(x))$

NSD2 discontinuous RHS NSD3 state dependent jump

2

Classification of NonSmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

Continuous activation functions in the RHS

 $\dot{x} = 1 + \max(0, x)$

Continuous non-diff. ODEs

 $\dot{x} = 1 + |x|$

NSD1 non-differentiable RHS Piecewise smooth systems

$$\dot{x} = f_i(x), \text{ if } x \in R_i$$

 $i = 1, \dots, m$

Projected dynamical systems

 $\dot{x} = \mathcal{P}_{\mathcal{T}_C(x)}(f(x))$

NSD2 discontinuous RHS Rigid bodies with impacts and friction

$$\begin{split} \dot{q} &= v\\ M(q)\dot{v} &= f_{\rm v}(q,v) + J_{\rm n}(q)\lambda_{\rm n}\\ 0 &\leq \lambda_{\rm n} \perp f_{\rm c}(q) \geq 0\\ ({\rm state \ jump \ law \ for \ }v) \end{split}$$

NSD3 state dependent jump

Outline of the lecture

4. What is so special about nonsmootness?

- 1 What are hybrid and nonsmooth systems?
- 2 Phenomena specific to nonsmooth systems
- 3 Time discretization of nonsmooth systems
- 4 Mathematical description of nonsmooth systems

The bouncing ball example - NSD3

$$\begin{split} \dot{q}(t) &= v(t) \\ m \ \dot{v}(t) &= -g \\ v(t^+) &= -\epsilon_{\rm r} v(t^-), \ {\rm if} \ v(t^-) \leq 0 \ {\rm and} \ q(t) = 0 \\ q(0) &= 0, \ v(0) > 0 \end{split}$$

- ▶ Coefficient of restitution $\epsilon_r \in [0, 1]$, e.g., $\epsilon_r = 0.9$.
- $t_1 = \frac{2v(0)}{g}, t_2 = t_1 + \frac{2\epsilon_r v(0)}{g}, \dots$ • $\Delta_{k+1} = t_{k+1} - t_k = \frac{2\epsilon_r^k v(0)}{g}.$
- Since $\epsilon_r < 1$ it follows that $\lim_{k \to \infty} \Delta_k = 0.$

- Real world system do not experience Zeno.
- By modeling and design one wants to avoid this behavior.
- Might complicate the numerical computations sometimes.

- Real world system do not experience Zeno.
- By modeling and design one wants to avoid this behavior.
- Might complicate the numerical computations sometimes.

Zoom in: trajectories spiral down.

- Real world system do not experience Zeno.
- By modeling and design one wants to avoid this behavior.
- Might complicate the numerical computations sometimes.

Zoom in: trajectories spiral down.

- Real world system do not experience Zeno.
- By modeling and design one wants to avoid this behavior.
- Might complicate the numerical computations sometimes.

Zoom in: trajectories spiral down.

- Real world system do not experience Zeno.
- By modeling and design one wants to avoid this behavior.
- Might complicate the numerical computations sometimes.

Zoom in: trajectories spiral down.

- Real world system do not experience Zeno.
- By modeling and design one wants to avoid this behavior.
- Might complicate the numerical computations sometimes.

Zoom in: trajectories spiral down.

A sliding mode example

- System evolves on surface of discontinuity.
- Need to define meaningful dynamics (treated later in detail).

A sliding mode example

- System evolves on surface of discontinuity.
- Need to define meaningful dynamics (treated later in detail).
- Reduced system dimension.

A sliding mode example

- System evolves on surface of discontinuity.
- Need to define meaningful dynamics (treated later in detail).
- Reduced system dimension.
- Solution not unique backwards in time.

A sliding mode example

- System evolves on surface of discontinuity.
- Need to define meaningful dynamics (treated later in detail).
- Reduced system dimension.
- Solution not unique backwards in time.
- Dynamics switch from ODE to DAE of higher index.

Nonunique solutions

Nonunique solutions example

- In nonsmooth systems examples with nonunique solutions easily constructed.
- It may not be clear what numerical algorithms do.

Nonunique solutions

Nonunique solutions example

- In nonsmooth systems examples with nonunique solutions easily constructed.
- It may not be clear what numerical algorithms do.
- ► To be avoided in controller design.

Nonunique solutions

Nonunique solutions example

- In nonsmooth systems examples with nonunique solutions easily constructed.
- It may not be clear what numerical algorithms do.
- ► To be avoided in controller design.

Nonunique solutions example

- In nonsmooth systems examples with nonunique solutions easily constructed.
- It may not be clear what numerical algorithms do.
- ► To be avoided in controller design.

Example from [Branicky, 1998]

Unstable piecewise affine systems

$$\dot{x} = f(x) \coloneqq \begin{cases} A_1 x, & \text{if } x_1 x_2 \le 0 \\ A_2 x, & \text{if } x_1 x_2 > 0 \end{cases}$$

with

$$A_1 = \begin{bmatrix} -1 & 1\\ -10 & -1 \end{bmatrix}, \ A_2 = \begin{bmatrix} -1 & 10\\ -1 & -1 \end{bmatrix}$$

First and third quadrant: $\dot{x} = A_1 x$.

 $\dot{x} = A_1 x$ - stable

Example from [Branicky, 1998]

Unstable piecewise affine systems

$$\dot{x} = f(x) \coloneqq \begin{cases} A_1 x, & \text{if } x_1 x_2 \le 0 \\ A_2 x, & \text{if } x_1 x_2 > 0 \end{cases}$$

with

$$A_1 = \begin{bmatrix} -1 & 1 \\ -10 & -1 \end{bmatrix}, \ A_2 = \begin{bmatrix} -1 & 10 \\ -1 & -1 \end{bmatrix}$$

- First and third quadrant: $\dot{x} = A_1 x$.
- Second and fourth quadrant: $\dot{x} = A_2 x$.

 $\dot{x} = A_2 x$ - stable

Example from [Branicky, 1998]

Unstable piecewise affine systems

$$\dot{x} = f(x) \coloneqq \begin{cases} A_1 x, & \text{if } x_1 x_2 \le 0 \\ A_2 x, & \text{if } x_1 x_2 > 0 \end{cases}$$

with

$$A_1 = \begin{bmatrix} -1 & 1\\ -10 & -1 \end{bmatrix}, \ A_2 = \begin{bmatrix} -1 & 10\\ -1 & -1 \end{bmatrix}$$

- First and third quadrant: $\dot{x} = A_1 x$.
- Second and fourth quadrant: $\dot{x} = A_2 x$.
- Nonsmooth systems can have stable modes but still be overall unstable.

 $\dot{x} = f(x)$ - unstable

Example from [Branicky, 1998]

Unstable piecewise affine systems

$$\dot{x} = f(x) \coloneqq \begin{cases} A_1 x, & \text{if } x_1 x_2 \le 0 \\ A_2 x, & \text{if } x_1 x_2 > 0 \end{cases}$$

with

$$A_1 = \begin{bmatrix} -1 & 1\\ -10 & -1 \end{bmatrix}, \ A_2 = \begin{bmatrix} -1 & 10\\ -1 & -1 \end{bmatrix}$$

- First and third quadrant: $\dot{x} = A_1 x$.
- Second and fourth quadrant: $\dot{x} = A_2 x$.
- Nonsmooth systems can have stable modes but still be overall unstable.

 $\dot{x} = f(x)$ - unstable

Numerical chattering in sliding mode examples

Explicit Euler for nonsmooth systems

 $x_{k+1} = x_k - h\operatorname{sign}(x_k)$

In presence of discontinuities numerical solutions can *chatter* around a discontinuity.

Numerical chattering in sliding mode examples

Explicit Euler for nonsmooth systems

 $x_{k+1} = x_k - h\operatorname{sign}(x_k)$

- In presence of discontinuities numerical solutions can *chatter* around a discontinuity.
- Decreasing the step size might worsen things.

Numerical chattering in sliding mode examples

Explicit Euler for nonsmooth systems

 $x_{k+1} = x_k - h\operatorname{sign}(x_k)$

- In presence of discontinuities numerical solutions can *chatter* around a discontinuity.
- Decreasing the step size might worsen things.

Explicit Euler for nonsmooth systems

- In presence of discontinuities numerical solutions can *chatter* around a discontinuity.
- Decreasing the step size might worsen things.

Explicit Euler for nonsmooth systems

- In presence of discontinuities numerical solutions can *chatter* around a discontinuity.
- Decreasing the step size might worsen things.

Explicit Euler for nonsmooth systems

- In presence of discontinuities numerical solutions can *chatter* around a discontinuity.
- Decreasing the step size might worsen things.
- Even sophisticated codes may struggle.

Explicit Euler for nonsmooth systems

- In presence of discontinuities numerical solutions can *chatter* around a discontinuity.
- Decreasing the step size might worsen things.
- Even sophisticated codes may struggle.
- Method converges but qualitative behavior is not good.

Explicit Euler for nonsmooth systems

- In presence of discontinuities numerical solutions can *chatter* around a discontinuity.
- Decreasing the step size might worsen things.
- Even sophisticated codes may struggle.
- Method converges but qualitative behavior is not good.

Explicit Euler for nonsmooth systems

 $x_{k+1} = x_k - h\operatorname{sign}(x_k)$

- In presence of discontinuities numerical solutions can *chatter* around a discontinuity.
- Decreasing the step size might worsen things.
- Even sophisticated codes may struggle.
- Method converges but qualitative behavior is not good.

3. Introduction to nonsmooth differential equations and hybrid systems

 Nonsmooth implicit methods resolve the issue (Lecture 4).

A. Nurkanović

- 1 What are hybrid and nonsmooth systems?
- 2 Phenomena specific to nonsmooth systems
- 3 Time discretization of nonsmooth systems
- 4 Mathematical description of nonsmooth systems

Time discretization methods for nonsmooth ODEs

Approaches to discretize and simulate a nonsmooth ODE

1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)

Time discretization methods for nonsmooth ODEs

Approaches to discretize and simulate a nonsmooth ODE

1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)

Time discretization methods for nonsmooth ODEs

Approaches to discretize and simulate a nonsmooth ODE

1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)

- 1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)
- 2) smoothing and penalty methods (low accuracy, easy to implement)

- 1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)
- 2) smoothing and penalty methods (low accuracy, easy to implement)

- 1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)
- 2) smoothing and penalty methods (low accuracy, easy to implement)

- 1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)
- 2) smoothing and penalty methods (low accuracy, easy to implement)
- 3) event-driven, switch-detecting, active-set methods (cannot handle Zeno, high accuracy)

- 1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)
- 2) smoothing and penalty methods (low accuracy, easy to implement)
- 3) event-driven, switch-detecting, active-set methods (cannot handle Zeno, high accuracy)

Compute global integration error ${\cal E}({\cal T})$ using different strategies

Tutorial example

$$\dot{x} = \begin{cases} A_1 x, & \psi(x) < 0, \\ A_2 x, & \psi(x) > 0 \end{cases}$$

with
$$A_1 = \begin{bmatrix} 1 & 2\pi \\ -2\pi & 1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 1 & -2\pi \\ 2\pi & 1 \end{bmatrix}$, $\psi(x) = ||x||_2^2 - 1$, $x(0) = (e^{-1}, 0)$,

Compute solution approximation:

1. with fixed step size IRK methods (time-stepping),

Compute global integration error ${\cal E}({\cal T})$ using different strategies

Tutorial example

$$\dot{x} = \begin{cases} A_1 x, & \psi(x) < 0, \\ A_2 x, & \psi(x) > 0 \end{cases}$$

with
$$A_1 = \begin{bmatrix} 1 & 2\pi \\ -2\pi & 1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 1 & -2\pi \\ 2\pi & 1 \end{bmatrix}$, $\psi(x) = ||x||_2^2 - 1$, $x(0) = (e^{-1}, 0)$,

Compute solution approximation:

- 1. with fixed step size IRK methods (time-stepping),
- 2. with sophisticated adaptive step size methods (time-stepping),

Compute global integration error ${\cal E}({\cal T})$ using different strategies

Tutorial example

$$\dot{x} = \begin{cases} A_1 x, & \psi(x) < 0, \\ A_2 x, & \psi(x) > 0 \end{cases}$$

with
$$A_1 = \begin{bmatrix} 1 & 2\pi \\ -2\pi & 1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 1 & -2\pi \\ 2\pi & 1 \end{bmatrix}$,
 $\psi(x) = ||x||_2^2 - 1$, $x(0) = (e^{-1}, 0)$,

Compute solution approximation:

- 1. with fixed step size IRK methods (time-stepping),
- 2. with sophisticated adaptive step size methods (time-stepping),
- 3. with switch detecting integrators,

Compute global integration error E(T) using different strategies

Tutorial example

$$\dot{x} = \begin{cases} A_1 x, & \psi(x) < 0, \\ A_2 x, & \psi(x) > 0 \end{cases}$$

with
$$A_1 = \begin{bmatrix} 1 & 2\pi \\ -2\pi & 1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 1 & -2\pi \\ 2\pi & 1 \end{bmatrix}$,
 $\psi(x) = ||x||_2^2 - 1$, $x(0) = (e^{-1}, 0)$,

Compute solution approximation:

- 1. with fixed step size IRK methods (time-stepping),
- 2. with sophisticated adaptive step size methods (time-stepping),
- 3. with switch detecting integrators,
- 4. via smoothed approximations.

Simulation time T = 1, no switch yet, high accuracy

1. Integration order plots fixed step size Implicit Runge-Kutta methods

Simulation time $T = \pi/2$, switch happened, low accuracy

1. Integration order plots fixed step size Implicit Runge-Kutta methods

The nonsmoothness leads to severe order reduction, all methods have O(h) accuracy.

2. Integration order plots adaptive step size methods

Very small step size necessary to achieve high accuracy even with very sophisticated methods.

2. Integration order plots adaptive step size methods

Step size small around switch - many switches = very slow integration.

3. Adaptive step size methods with switch detection

Switch detected explicitly - high accuracy properties recovered.

3. Adaptive step size methods with switch detection

No extremely small step sizes around the switch.

Error dominated by σ

$$\dot{x} = (1 - \alpha_{\sigma}(x))A_1x + \alpha_{\sigma}(x)A_2x, \ \alpha_{\sigma}(x) = \frac{1}{2} \left(1 - \tanh\left(\frac{\psi(x)}{\sigma}\right)\right)$$

Error dominated by σ

$$\dot{x} = (1 - \alpha_{\sigma}(x))A_1x + \alpha_{\sigma}(x)A_2x, \ \alpha_{\sigma}(x) = \frac{1}{2} \left(1 - \tanh\left(\frac{\psi(x)}{\sigma}\right) \right)$$

Error dominated by σ

$$\dot{x} = (1 - \alpha_{\sigma}(x))A_1x + \alpha_{\sigma}(x)A_2x, \ \alpha_{\sigma}(x) = \frac{1}{2} \left(1 - \tanh\left(\frac{\psi(x)}{\sigma}\right)\right)$$

Error dominated by σ

$$\dot{x} = (1 - \alpha_{\sigma}(x))A_1x + \alpha_{\sigma}(x)A_2x, \ \alpha_{\sigma}(x) = \frac{1}{2} \left(1 - \tanh\left(\frac{\psi(x)}{\sigma}\right)\right)$$

Error dominated by σ

$$\dot{x} = (1 - \alpha_{\sigma}(x))A_1x + \alpha_{\sigma}(x)A_2x, \ \alpha_{\sigma}(x) = \frac{1}{2} \left(1 - \tanh\left(\frac{\psi(x)}{\sigma}\right)\right)$$

Smoothed sliding mode example

Error dominated by σ

Smooth approximation parameterized by $\sigma = 10^{-5}$

$$\dot{x} = -\operatorname{sign}(x)$$

Smoothed sliding mode example

Error dominated by σ

Smooth approximation parameterized by $\sigma = 10^{-5}$

$$\dot{x} = -\tanh\left(\frac{x}{\sigma}\right)$$

3. Introduction to nonsmooth differential equations and hybrid systems

A. Nurkanović

- 1 What are hybrid and nonsmooth systems?
- 2 Phenomena specific to nonsmooth systems
- 3 Time discretization of nonsmooth systems
- 4 Mathematical description of nonsmooth systems

Classification nonsmooth dynamical systems

Classification of NonSmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

Classification of NonSmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

Continuous activation functions in the RHS

 $\dot{x} = 1 + \max(0, x)$

Continuous non-diff. ODEs

 $\dot{x} = 1 + |x|$

NSD1 non-differentiable RHS

Classification nonsmooth dynamical systems

Classification of NonSmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

Continuous activation functions in the RHS

 $\dot{x} = 1 + \max(0, x)$

Continuous non-diff. ODEs

 $\dot{x} = 1 + |x|$

NSD1 non-differentiable RHS Piecewise smooth systems

$$\dot{x} = f_i(x), \text{ if } x \in R_i$$

 $i = 1, \dots, m$

Projected dynamical systems

 $\dot{x} = \mathcal{P}_{\mathcal{T}_C(x)}(f(x))$

NSD2 discontinuous RHS q **NSD3** state dependent jump

Classification of NonSmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

Continuous activation functions in the RHS

 $\dot{x} = 1 + \max(0, x)$

Continuous non-diff. ODEs

 $\dot{x} = 1 + |x|$

NSD1 non-differentiable RHS Piecewise smooth systems

$$\dot{x} = f_i(x), \text{ if } x \in R_i$$

 $i = 1, \dots, m$

Projected dynamical systems

 $\dot{x} = \mathcal{P}_{\mathcal{T}_C(x)}(f(x))$

NSD2 discontinuous RHS Rigid bodies with impacts and friction

$$\begin{split} \dot{q} &= v\\ M(q)\dot{v} &= f_{\rm v}(q,v) + J_{\rm n}(q)\lambda_{\rm n}\\ 0 &\leq \lambda_{\rm n} \perp f_{\rm c}(q) \geq 0\\ ({\rm state \ jump \ law \ for \ }v) \end{split}$$

NSD3 state dependent jump Extend the ODE by algebraic equations g and algebraic states z:

 $\dot{x}(t) = f(x(t), u(t), z(t))$ 0 = g(x(t), z(t), u(t))

- differential states: $x(t) \in \mathbb{R}^{n_x}$
- ▶ algebraic states: $z(t) \in \mathbb{R}^{n_z}$
- ▶ control input: $u(t) \in \mathbb{R}^{n_u}$
- ▶ no z(0) needed, implicitly determined via $0 = g(x_0, z(0), u(0))$

Simplified view: introduce n_z new variables z(t), and n_z new algebraic equations g(x, z, u) = 0 to compute them.

Modeling of nonsmoothness with convex optimization

Ordinary differential inclusion/equation

 $\dot{x}(t) \in f(x(t), u(t), \mathbf{z}(x(t)))$

nonsmoothness modeled via z(x):

Convex optimization problem

$$z(x) \in \operatorname*{argmin}_{z} F(z, x)$$

s.t. $H(z, x) \ge 0$

Modeling of nonsmoothness with convex optimization

Ordinary differential inclusion/equation

 $\dot{x}(t) \in f(x(t), u(t), \mathbf{z}(x(t)))$

nonsmoothness modeled via z(x):

Dynamic complementary system

$$\begin{split} \dot{x}(t) &= f(x,u,z) \\ 0 &= \nabla_z F(z,x) - \nabla_z H(z,x) \mu \\ 0 &\leq \mu \perp H(z,x) \geq 0 \end{split}$$

Modeling of nonsmoothness with convex optimization

Ordinary differential inclusion/equation

 $\dot{x}(t) \in f(x(t), u(t), \boldsymbol{z}(x(t)))$

nonsmoothness modeled via z(x):

Dynamic complementary system = nonsmooth DAE

$$\begin{split} \dot{x}(t) &= f(x,u,z) \\ 0 &= \nabla_z F(z,x) - \nabla_z H(z,x) \mu \\ 0 &= \min(\mu,H(z,x)) \end{split}$$

Motivating examples: ODEs with a discontinuous right-hand side Crossing a discontinuity

Consider the ODE

$$\dot{x} = 2 - \operatorname{sign}(x)$$

More explicitly:

$$\dot{x} = \begin{cases} 3, & \text{if } x < 0\\ 1, & \text{if } x > 0 \end{cases}$$

Motivating examples: ODEs with a discontinuous right-hand side Sliding mode (simpler)

Consider the ODE

$$\dot{x} = -\mathrm{sign}(x)$$

And let

$$\operatorname{sign}(x) = \begin{cases} -1, & \text{if } x < 0\\ 0, & \text{if } x = 0\\ 1, & \text{if } x > 0 \end{cases}$$

Then...

$$\dot{x} = \begin{cases} 1, & \text{if } x < 0\\ 0, & \text{if } x = 0\\ -1, & \text{if } x > 0 \end{cases}$$

Motivating examples: ODEs with a discontinuous right-hand side Sliding mode (simpler)

Consider the ODE

$$\dot{x} = -\operatorname{sign}(x)$$

And let

$$\operatorname{sign}(x) = \begin{cases} -1, & \text{if } x < 0\\ 0, & \text{if } x = 0\\ 1, & \text{if } x > 0 \end{cases}$$

Then...

$$\dot{x} = \begin{cases} 1, & \text{if } x < 0\\ 0, & \text{if } x = 0\\ -1, & \text{if } x > 0 \end{cases}$$

And let

$$\operatorname{sign}(x) = \begin{cases} -1, & \text{if } x < 0\\ 0, & \text{if } x = 0\\ 1, & \text{if } x > 0 \end{cases}$$

1

 $\dot{x} = -\mathrm{sign}(x) + 0.5\sin(t)$

Motivating examples: ODEs with a discontinuous right-hand side Sliding mode

A. Nurkanović

Consider the ODE

$$\begin{array}{c|c} R_{1} \\ R_{1} \\ 0.5 \\ t \\ \end{array}$$

$\dot{x} = -\mathrm{sign}(x) + 0.5\sin(t)$

And let

Consider the ODE

$$\operatorname{sign}(x) = \begin{cases} -1, & \text{if } x < 0\\ 0, & \text{if } x = 0\\ 1, & \text{if } x > 0 \end{cases}$$

Motivating examples: ODEs with a discontinuous right-hand side Sliding mode

$\dot{x} = -\text{sign}(x) + 0.5 \sin(t)$ 1.5 And let

$$\operatorname{sign}(x) = \begin{cases} -1, & \text{if } x < 0\\ 0, & \text{if } x = 0\\ 1, & \text{if } x > 0 \end{cases}$$

Consider the ODE

We have for some $t>t^*$ that x(t)=0 and $\dot{x}(t)=0$

Motivating examples: ODEs with a discontinuous right-hand side Sliding mode

x

$\int -1, \quad \text{if } x < 0$

$$\operatorname{sign}(x) = \begin{cases} 0, & \text{if } x = 0\\ 1, & \text{if } x > 0 \end{cases}$$

We have for some $t > t^*$ that x(t) = 0and $\dot{x}(t) = 0$ That is $\operatorname{sign}(0) = 0 = 0.5 \sin(t)$

Motivating examples: ODEs with a discontinuous right-hand side Sliding mode

 $\label{eq:consider} Consider \ the \ \mathsf{ODE}$

 $\dot{x} = -\mathrm{sign}(x) + 0.5\sin(t)$

And let

1.5

2

And let $\begin{pmatrix} -1, & \text{if } x < 0 \end{pmatrix}$

$$\operatorname{sign}(x) = \begin{cases} 0, & \text{if } x = 0\\ 1, & \text{if } x > 0 \end{cases}$$

 $\dot{x} = -\mathrm{sign}(x) + 0.5\sin(t)$

We have for some $t>t^*$ that x(t)=0 and $\dot{x}(t)=0$ That is ${\rm sign}(0)=0=0.5\sin(t)$

Something went wrong...

Consider the ODE

1.5

-0.5

-1.5

0

0.5

1.5

2

Motivating examples: ODEs with a discontinuous right-hand side Sliding mode - fixed

Consider the ODE

 $\dot{x} \in -\operatorname{sign}(x) + 0.5\sin(t)$

And let

$$\operatorname{sign}(x) \in \begin{cases} \{-1\}, & \text{if } x < 0\\ [-1,1], & \text{if } x = 0\\ \{1\}, & \text{if } x > 0 \end{cases}$$

We have for some $t>t^*$ that x(t)=0 and $\dot{x}(t)=0$

Motivating examples: ODEs with a discontinuous right-hand side Sliding mode - fixed

Consider the ODE

 $\dot{x} \in -\operatorname{sign}(x) + 0.5\sin(t)$

And let

$$\operatorname{sign}(x) \in \begin{cases} \{-1\}, & \text{if } x < 0\\ [-1,1], & \text{if } x = 0\\ \{1\}, & \text{if } x > 0 \end{cases}$$

We have for some $t>t^*$ that x(t)=0 and $\dot{x}(t)=0$

That is $sign(0) = [-1, 1] \ni 0.5 sin(t)$

Motivating examples: ODEs with a discontinuous right-hand side Sliding mode - fixed

Consider the ODE

 $\dot{x} \in -\mathrm{sign}(x) + 0.5\sin(t)$

And let

$$\operatorname{sign}(x) \in \begin{cases} \{-1\}, & \text{if } x < 0\\ [-1,1], & \text{if } x = 0\\ \{1\}, & \text{if } x > 0 \end{cases}$$

We have for some $t>t^*$ that x(t)=0 and $\dot{x}(t)=0$

That is $sign(0) = [-1, 1] \ni 0.5 sin(t)$

It works with set valued extensions.

 $\mu(N) = 0$

Filippov differential inclusion

Replace ODE with a discontinuous right-hand side

 $\dot{x}(t) = f(x(t))$

by

$$\dot{x}(t) \in F_{\rm F}(x(t))$$

where $F_{\mathrm{F}}(x) : \mathbb{R}^{n_x} \to \mathcal{P}(\mathbb{R}^{n_x})$ is defined as:

$$F_{\mathbf{F}}(x) \coloneqq \bigcap_{\epsilon > 0} \bigcap_{\mu(N) = 0} \overline{\operatorname{conv}} f(x + \epsilon \mathcal{B}(x) \setminus N)$$

•
$$f(x)$$
 continuous at x : $F_{\rm F}(x) = \{f(x)\}$

Filippov differential inclusion

Replace ODE with a discontinuous right-hand side

 $\dot{x}(t) = f(x(t))$

by

$$\dot{x}(t) \in F_{\rm F}(x(t))$$

where $F_{\mathrm{F}}(x) : \mathbb{R}^{n_x} \to \mathcal{P}(\mathbb{R}^{n_x})$ is defined as:

$$F_{\mathbf{F}}(x) \coloneqq \bigcap_{\epsilon > 0} \bigcap_{\mu(N) = 0} \overline{\operatorname{conv}} f(x + \epsilon \mathcal{B}(x) \setminus N)$$

•
$$f(x)$$
 continuous at x : $F_{\rm F}(x) = \{f(x)\}$

 at discontinuity: convex combination of neighboring vector fields and ignore what is at the discontinuity

Regard **discontinuous** right-hand side, **piecewise smooth** on disjoint open regions $R_i \subset \mathbb{R}^{n_x}$

Discontinuous ODE (NSD2)

$$\dot{x} = f_i(x, u), \text{ if } x \in R_i, \ i = 1, \dots, n_f$$

$$R_1 = \{ x \in \mathbb{R}^{n_x} \mid \psi_1(x) > 0, \psi_2(x) > 0, \dots \psi_{n_\psi}(x) > 0 \\ R_2 = \{ x \in \mathbb{R}^{n_x} \mid \psi_1(x) > 0, \psi_2(x) > 0, \dots \psi_{n_\psi}(x) < 0 \\ \dots \end{pmatrix}$$

 $R_{n_f} = \{ x \in \mathbb{R}^{n_x} \mid \psi_1(x) < 0, \psi_2(x) < 0, \dots, \psi_{n_{d_t}}(x) < 0 \}$

▶ zero level sets of $\psi_i(x) = 0$ - region boundaries

•
$$n_{\psi}$$
 smooth scalar switching functions define $n_f = 2^{n_{\psi}}$ regions

The "structured" discontinuous right-hand side in PSS enables to define convex multipliers θ_i to define the convex set $F_{\rm F}(x,u)$

Filippov Differential Inclusion

$$\dot{x} \in F_{\mathcal{F}}(x, u) := \left\{ \sum_{i=1}^{n_f} f_i(x, u) \,\theta_i \ \middle| \ \sum_{i=1}^{n_f} \theta_i = 1, \\ \theta_i \ge 0, \quad i = 1, \dots n_f, \\ \theta_i = 0, \quad \text{if } x \notin \overline{R_i} \right\}$$

Aleksei F. Filippov (1923-2006) image source: wikipedia

The "structured" discontinuous right-hand side in PSS enables to define convex multipliers θ_i to define the convex set $F_{\rm F}(x,u)$

Filippov Differential Inclusion

$$\dot{x} \in F_{\mathcal{F}}(x, u) := \left\{ \sum_{i=1}^{n_f} f_i(x, u) \,\theta_i \quad \left| \quad \sum_{i=1}^{n_f} \theta_i = 1, \\ \theta_i \ge 0, \quad i = 1, \dots n_f, \\ \theta_i = 0, \quad \text{if } x \notin \overline{R_i} \right. \right\}$$

Aleksei F. Filippov (1923-2006) image source: wikipedia

- for interior points $x \in R_i$ nothing changes: $F_F(x, u) = \{f_i(x, u)\}$
- Provides meaningful generalization on region boundaries E.g. on $\overline{R_1} \cap \overline{R_2}$ both θ_1 and θ_2 can be nonzero

Stewart's representation

Introduced in [Stewart, 1990], used in [Nurkanović et al., 2024]

Assume sets
$$R_i$$
 given by $R_i = \left\{ x \in \mathbb{R}^{n_x} | g_i(x) < \min_{j \neq i} g_j(x) \right\}$

- How to obtain it from $R_i = \{x \in \mathbb{R}^{n_x} \mid \psi_1(x) > 0, \psi_2(x) > 0, \dots, \psi_{n_\psi}(x) > 0\}$?
- How to find the functions $g_i(x)$?

Stewart's representation

Introduced in [Stewart, 1990], used in [Nurkanović et al., 2024]

Assume sets
$$R_i$$
 given by $\left| R_i = \left\{ x \in \mathbb{R}^{n_x} \left| g_i(x) < \min_{j \neq i} g_j(x) \right. \right\} \right.$

- How to obtain it from $R_i = \{x \in \mathbb{R}^{n_x} \mid \psi_1(x) > 0, \psi_2(x) > 0, \dots \psi_{n_\psi}(x) > 0\}$?
- How to find the functions $g_i(x)$?

Definition of regions via switching functions

$$R_1 = \{ x \in \mathbb{R}^{n_x} \mid \psi_1(x) > 0, \psi_2(x) > 0, \dots \psi_{n_\psi}(x) > 0 \}$$

$$R_2 = \{ x \in \mathbb{R}^{n_x} \mid \psi_1(x) > 0, \psi_2(x) > 0, \dots \psi_{n_\psi}(x) < 0 \}$$

$$R_{n_f} = \{ x \in \mathbb{R}^{n_x} \mid \psi_1(x) < 0, \psi_2(x) < 0, \dots \psi_{n_\psi}(x) < 0 \}$$
$$\psi(x) \coloneqq \begin{bmatrix} \psi_1(x) & \psi_2(x) & \dots & \psi_{n_\psi}(x) \end{bmatrix}^\top \in \mathbb{R}^{n_\psi}$$

Sign matrix

S =	[1]	1		1]
	1	1		-1
	:	÷	·	:
	[-1]	-1		-1

Definition via *i*-th row $S_{i,\bullet}$:

$$R_i = \{ x \in \mathbb{R}^{n_x} \mid S_{i,\bullet}\psi(x) > 0 \}$$

$$g(x) = -S\psi(x)$$

Examples for finding switching function

- ▶ In Stewart's representation sets R_i given by $R_i = \{x \in \mathbb{R}^{n_x} | g_i(x) < \min_{j \neq i} g_j(x) \}$
- From switching functions $\psi(x) \in \mathbb{R}^{n_{\psi}}$ obtain *Stewart's indicator functions* $g(x) \in \mathbb{R}^{n_f}$ via $g(x) = -S\psi(x)$

Example 1 - single switching function

$$R_{1} = \{x \in \mathbb{R}^{n_{x}} \mid \psi(x) > 0$$

$$R_{2} = \{x \in \mathbb{R}^{n_{x}} \mid \psi(x) < 0$$

$$S = \begin{bmatrix} 1\\ -1 \end{bmatrix}$$

$$g(x) = \begin{bmatrix} -\psi(x)\\ \psi(x) \end{bmatrix}$$

Examples for finding switching function

- ▶ In Stewart's representation sets R_i given by $R_i = \{x \in \mathbb{R}^{n_x} | g_i(x) < \min_{j \neq i} g_j(x) \}$
- From switching functions $\psi(x) \in \mathbb{R}^{n_{\psi}}$ obtain *Stewart's indicator functions* $g(x) \in \mathbb{R}^{n_f}$ via $g(x) = -S\psi(x)$

Example 1 - single switching function

$$R_{1} = \{x \in \mathbb{R}^{n_{x}} \mid \psi(x) > 0$$

$$R_{2} = \{x \in \mathbb{R}^{n_{x}} \mid \psi(x) < 0$$

$$S = \begin{bmatrix} 1\\ -1 \end{bmatrix}$$

$$g(x) = \begin{bmatrix} -\psi(x)\\ \psi(x) \end{bmatrix}$$

Example 2 - two switching function

$$\psi(x) = (\psi_1(x), \psi_2(x))$$
$$S = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -1 & 1 \\ -1 & -1 \end{bmatrix}$$
$$g(x) = \begin{bmatrix} -\psi_1(x) - \psi_2(x) \\ -\psi_1(x) + \psi_2(x) \\ \psi_1(x) - \psi_2(x) \\ \psi_1(x) + \psi_2(x) \end{bmatrix}$$

Switched ODE not well-defined on region boundaries ∂R_i .

Replace ODE by differential inclusion, using convex combination of neighboring vector fields.

Filippov differential inclusion

$$\dot{x} \in F_{\rm F}(x,u) := \left\{ \sum_{i=1}^{n_f} f_i(x,u) \,\theta_i \, \left| \begin{array}{c} \sum_{i=1}^{n_f} \theta_i = 1, \, \theta_i \ge 0, \, i = 1, \dots, n_f, \, \theta_i = 0, \, \text{if} \, x \notin R_i \cup \partial R_i \right\} \right.$$

Switched ODE not well-defined on region boundaries ∂R_i .

Replace ODE by differential inclusion, using convex combination of neighboring vector fields.

Filippov differential inclusion

$$\dot{x} \in F_{\rm F}(x,u) := \left\{ \sum_{i=1}^{n_f} f_i(x,u) \,\theta_i \, \left| \begin{array}{c} \sum_{i=1}^{n_f} \theta_i = 1, \, \theta_i \ge 0, \, i = 1, \dots, n_f, \, \theta_i = 0, \, \text{if} \, x \notin R_i \cup \partial R_i \right\} \right.$$

- For interior points $x \in R_i$ nothing changes: $F_F(x, u) = \{f_i(x, u)\}.$
- Provides meaningful generalization on region boundaries.
 E.g. on ∂R₁ ∩ ∂R₂ both θ₁ and θ₂ can be nonzero.

The unit simplex.

Using Stewart's reformulation [Stewart, 1990] and the KKT conditions of the parametric linear program.

$$R_i = \{ x \in \mathbb{R}^n \mid g_i(x) < \min_{j \neq i} g_j(x) \}.$$

$$\begin{split} \dot{x} &= F(x,u) \; \theta \\ \text{with} \quad \theta \in \mathop{\mathrm{argmin}}_{\tilde{\theta} \in \mathbb{R}^{n_f}} \quad g(x)^\top \tilde{\theta} \\ \text{s.t.} \quad 0 \leq \tilde{\theta} \\ \quad 1 &= e^\top \tilde{\theta} \end{split}$$

$$F(x, u) \coloneqq [f_1(x, u), \dots, f_{n_f}(x, u)] \in \mathbb{R}^{n_x \times n_f}$$
$$g(x) \coloneqq [g_1(x), \dots, g_{n_f}(x)]^\top \in \mathbb{R}^{n_f}$$
$$e \coloneqq [1, 1, \dots, 1]^\top \in \mathbb{R}^{n_f}$$

Using Stewart's reformulation [Stewart, 1990] and the KKT conditions of the parametric linear program.

$$R_i = \{ x \in \mathbb{R}^n \mid g_i(x) < \min_{j \neq i} g_j(x) \}.$$

$$\begin{split} \dot{x} &= F(x, u) \; \theta \\ \text{with} \quad \theta \in \mathop{\mathrm{argmin}}_{\tilde{\theta} \in \mathbb{R}^{n_f}} \quad g(x)^\top \tilde{\theta} \\ &\text{s.t.} \quad 0 \leq \tilde{\theta} \\ \quad 1 &= e^\top \tilde{\theta} \end{split}$$

$$F(x, u) \coloneqq [f_1(x, u), \dots, f_{n_f}(x, u)] \in \mathbb{R}^{n_x \times n_f}$$
$$g(x) \coloneqq [g_1(x), \dots, g_{n_f}(x)]^\top \in \mathbb{R}^{n_f}$$
$$e \coloneqq [1, 1, \dots, 1]^\top \in \mathbb{R}^{n_f}$$

Using Stewart's reformulation [Stewart, 1990] and the KKT conditions of the parametric linear program.

$$R_i = \{ x \in \mathbb{R}^n \mid g_i(x) < \min_{j \neq i} g_j(x) \}.$$

$$\begin{split} \dot{x} &= F(x, u) \; \theta \\ \text{with} \quad \theta \in \mathop{\mathrm{argmin}}_{\tilde{\theta} \in \mathbb{R}^{n_f}} \quad g(x)^\top \tilde{\theta} \\ \text{s.t.} \quad 0 \leq \tilde{\theta} \\ 1 - e^\top \tilde{\theta} \end{split}$$

$$F(x, u) \coloneqq [f_1(x, u), \dots, f_{n_f}(x, u)] \in \mathbb{R}^{n_x \times n_f}$$
$$g(x) \coloneqq [g_1(x), \dots, g_{n_f}(x)]^\top \in \mathbb{R}^{n_f}$$
$$e \coloneqq [1, 1, \dots, 1]^\top \in \mathbb{R}^{n_f}$$

Using Stewart's reformulation [Stewart, 1990] and the KKT conditions of the parametric linear program.

$$R_i = \{ x \in \mathbb{R}^n \mid g_i(x) < \min_{j \neq i} g_j(x) \}.$$

$$\dot{x} = F(x, u) \ \theta$$

with $\theta \in \underset{\tilde{\theta} \in \mathbb{R}^{n_f}}{\operatorname{argmin}} g(x)^{\top} \tilde{\theta}$
s.t. $0 \leq \tilde{\theta}$
 $1 = e^{\top} \tilde{\theta}$

$$F(x, u) \coloneqq [f_1(x, u), \dots, f_{n_f}(x, u)] \in \mathbb{R}^{n_x \times n_f}$$
$$g(x) \coloneqq [g_1(x), \dots, g_{n_f}(x)]^\top \in \mathbb{R}^{n_f}$$
$$e \coloneqq [1, 1, \dots, 1]^\top \in \mathbb{R}^{n_f}$$

Using Stewart's reformulation [Stewart, 1990] and the KKT conditions of the parametric linear program.

$$R_i = \{ x \in \mathbb{R}^n \mid g_i(x) < \min_{j \neq i} g_j(x) \}.$$

Linear programming representation

$$\dot{x} = F(x, u) \ \theta$$

with
$$\theta \in \underset{\tilde{\theta} \in \mathbb{R}^{n_f}}{\operatorname{argmin}} \quad g(x)^{\top} \tilde{\theta}$$

s.t. $0 \leq \tilde{\theta}$
 $1 = e^{\top} \tilde{\theta}$

$$F(x, u) \coloneqq [f_1(x, u), \dots, f_{n_f}(x, u)] \in \mathbb{R}^{n_x \times n_f}$$
$$g(x) \coloneqq [g_1(x), \dots, g_{n_f}(x)]^\top \in \mathbb{R}^{n_f}$$
$$e \coloneqq [1, 1, \dots, 1]^\top \in \mathbb{R}^{n_f}$$

Replace the LP by its optimality conditions.

Dynamic complementarity system (DCS)

$$\dot{x} = F(x, u) \ \theta$$
 (1a)

$$0 = g(x) - \lambda - e\mu \tag{1b}$$

$$0 \le \theta \perp \lambda \ge 0 \tag{1c}$$

$$1 = e^{\top} \theta \tag{1d}$$

- $\mu \in \mathbb{R}$ and $\lambda \in \mathbb{R}^{n_f}$ Lagrange multipliers.
- (1c) $\Leftrightarrow \min\{\theta, \lambda\} = 0 \in \mathbb{R}^{n_f}$
- ► Together, (1b), (1c), (1d) determine the $(2n_f + 1)$ variables (θ, λ, μ) uniquely.

Example: continuity of multipliers in different switching cases

Different switching cases

1. Crossing a surface of discontinuity, $\dot{x}(t) \in 2 - \operatorname{sign}(x(t))$,

Example: continuity of multipliers in different switching cases

Different switching cases

2. Sliding mode, $\dot{x}(t) \in -\text{sign}(x(t)) + 0.2 \sin(5t)$,

Example: continuity of multipliers in different switching cases

Different switching cases

3. Leaving sliding mode $\dot{x}(t) \in -\text{sign}(x(t)) + t$.

Example: continuity of multipliers in different switching cases

Different switching cases

4. Spontaneous switch, $\dot{x}(t) \in \mathrm{sign}(x(t))$,

Different switching cases

- 1. Crossing a surface of discontinuity, $\dot{x}(t) \in 2 \operatorname{sign}(x(t))$,
- 2. Sliding mode, $\dot{x}(t) \in -\text{sign}(x(t)) + 0.2\sin(5t)$,
- 3. Leaving sliding mode $\dot{x}(t) \in -\text{sign}(x(t)) + t$.
- 4. Spontaneous switch, $\dot{x}(t) \in sign(x(t))$,

Regard convex set K. The Euclidean projection is defined as the following convex optimization problem:

$$y = \mathbf{P}_K(x) \coloneqq \underset{z}{\operatorname{argmin}} \frac{1}{2} (x - z)^\top (x - z)$$

s.t. $z \in K$.

Definition (Tangent cone)

The tangent cone at $x \in \mathcal{C}$ is defined as the set: $\mathcal{T}_{\mathcal{C}}(x) = \{ d \in \mathbb{R}^n \mid \exists \{x^k\} \subset \mathcal{C}, \{t^k\} \subset \mathbb{R}_{\geq 0} : \lim_{k \to \infty} t^k = 0, \lim_{k \to \infty} x^k = x, \lim_{k \to \infty} \frac{x^k - x}{t^k} = d \}$

- ▶ assume that the set C (not necessarily convex) is finely defined, $C = \{x \in \mathbb{R}^{n_x} \mid c_i(x) \ge 0, i = 1, ..., m\}$
- ▶ assume $\nabla c_i(x), i = 1, ..., m$ linearly indepedent, LICQ hold.
- ▶ then, $\mathcal{T}_{\mathcal{C}}(x) = \{ d \in \mathbb{R}^{n_x} \mid \nabla c_i(x)^\top d \ge 0, \forall i \in \mathcal{A}(x) \}$ (convex polyhedral), where $\mathcal{A}(x) = \{ i \mid c_i(x) = 0 \}.$

Projected Dynamical Systems (PDS)

Introduced in 1970s by Claude Henry [Henry, 1972, Henry, 1973], Equivalences: [Brogliato et al., 2006, Serea, 2003, Heemels et al., 2000]

Projected dynamical system (NSD2)

$$\dot{x}(t) = \mathcal{P}_{\mathcal{T}_{\mathcal{C}}(x(t))} f(x(t), u(t))$$
$$x(0) \in \mathcal{C}$$

Features of PDS:

- ▶ state stays within $C = \{x \in \mathbb{R}^{n_x} \mid c(x) \ge 0\}$ for all time
- derivative may be discontinuous on the boundary of C (NSD2)

Projected Dynamical Systems (PDS)

Introduced in 1970s by Claude Henry [Henry, 1972, Henry, 1973], Equivalences: [Brogliato et al., 2006, Serea, 2003, Heemels et al., 2000]

Projected dynamical system (NSD2)

$$\dot{x}(t) = \mathcal{P}_{\mathcal{T}_{\mathcal{C}}(x(t))} f(x(t), u(t))$$
$$x(0) \in \mathcal{C}$$

Features of PDS:

- ▶ state stays within $C = \{x \in \mathbb{R}^{n_x} \mid c(x) \ge 0\}$ for all time
- derivative may be discontinuous on the boundary of C (NSD2)

Example trajectory of PDS

Projected Dynamical Systems (PDS) as DCS

Projected dynamical system (NSD2)

$$\dot{x}(t) = \mathcal{P}_{\mathcal{T}_{\mathcal{C}}(x(t))}(f(x(t), u(t)))$$
$$x(0) \in \mathcal{C}$$

The KKT conditions of $y = P_{\mathcal{T}_{\mathcal{C}}(x)}(f(x, u))$:

$$y(t) = f(x(t), u(t)) + \nabla c(x(t))\lambda(t)$$
$$0 \le \underbrace{\nabla c(x(t))^{\top} y(t)}_{=\frac{\mathrm{d}}{\mathrm{d}t} c(x(t))} \perp \lambda(t) \ge 0$$

- ▶ if $c_i(x) > 0$, then $\lambda_i = 0$ ($\nabla c_i(x)$ does not contribute to tangent cone)
- ▶ if $c_i(x) = 0$, and stays active, then $\frac{\mathrm{d}}{\mathrm{d}t}c(x(t)) \ge 0$

Projected Dynamical Systems (PDS) as DCS

Projected dynamical system (NSD2)	Gradient complementarity system (GCS)
$\begin{split} \dot{x}(t) &= \mathbf{P}_{\mathcal{T}_{\mathcal{C}}(x(t))}(f(x(t), u(t))) \\ x(0) &\in \mathcal{C} \end{split}$	$\dot{x}(t) = f(x(t), u(t)) + \nabla c(x(t))\lambda(t)$ $0 \le c(x(t)) \perp \lambda(t) \ge 0$

The KKT conditions of $y = P_{\mathcal{T}_{\mathcal{C}}(x)}(f(x, u))$:

$$\begin{split} y(t) &= f(x(t), u(t)) + \nabla c(x(t))\lambda(t) \\ 0 &\leq \underbrace{\nabla c(x(t))^\top y(t)}_{=\frac{\mathrm{d}}{\mathrm{d}t} c(x(t))} \perp \lambda(t) \geq 0 \end{split}$$

- if $c_i(x) > 0$, then $\lambda_i = 0$ ($\nabla c_i(x)$ does not contribute to tangent cone)
- ▶ if $c_i(x) = 0$, and stays active, then $\frac{\mathrm{d}}{\mathrm{d}t}c(x(t)) \ge 0$

λ(t) - discontinuous w.r.t. time.
 x(t), c(x(t)) - continuous w.r.t. time.

NSD3 state jump example: bouncing ball

Bouncing ball with state x = (q, v):

$$\begin{split} \dot{q} &= v, \, m\dot{v} = -mg, \quad \text{if} \; q > 0 \\ v(t^+) &= -0.9 \, v(t^-), \qquad \text{if} \; q(t^-) = 0 \; \text{and} \; v(t^-) < 0 \end{split}$$

Time plot of bouncing ball trajectory:

Phase plot of bouncing ball trajectory:

NSD3 state jump example: bouncing ball

Bouncing ball with state x = (q, v):

$$\begin{split} \dot{q} &= v, \, m \dot{v} = -mg, \quad \text{if} \, q > 0 \\ v(t^+) &= -0.9 \, v(t^-), \qquad \text{if} \, q(t^-) = 0 \text{ and } v(t^-) < 0 \end{split}$$

Time plot of bouncing ball trajectory:

Phase plot of bouncing ball trajectory:

Question: could we transform NSD3 systems into (easier) NSD2 systems?

- 1. mimic state jump by auxiliary dynamic system $\dot{x} = f_{\mathrm{aux}}(x)$ on prohibited region
- 2. introduce a **clock state** $t(\tau)$ that stops counting when the auxiliary system is active
- 3. adapt speed of time, $\frac{dt}{d\tau} = s$ with $s \ge 1$, and impose terminal constraint t(T) = T

The time-freezing reformulation

Augmented state $(x,t) \in \mathbb{R}^{n+1}$ evolves in numerical time τ . Augmented system is nonsmooth, of NSD2 type:

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \begin{bmatrix} x \\ t \end{bmatrix} = \begin{cases} s \begin{bmatrix} f(x) \\ 1 \end{bmatrix}, & \text{ if } c(x) \ge 0 \\ \\ \begin{bmatrix} sf_{\mathrm{aux}}(x) \\ 0 \end{bmatrix}, & \text{ if } c(x) < 0 \end{cases}$$

- During normal times, system and clock state evolve with adapted speed s ≥ 1.
- ► Auxiliary system dx/dτ = f_{aux}(x) mimics state jump while time is frozen, dt/dτ = 0.

Time-freezing for bouncing ball example

We can recover the true solution by plotting $x(\tau)$ vs. $t(\tau)$ and disregarding "frozen pieces".

Example of a time-freezing optimal control problem

Time-freezing tracking

Example of a time-freezing optimal control problem

Time-freezing tracking

Example of a time-freezing optimal control problem

Time-freezing tracking

- State depended switches and jumps (internal) are qualitatively different from integer controls (external).
- Nonsmooth systems exhibit rich behavior not seen in smooth systems.
- > Accurate smooth approximation jeopardize the performance of smooth solvers and,
- ... behave numerically as nonsmooth systems
- Different classes of numerical methods for time discretization.
- There are many mathematical formalism to treat nonsmoothness.
- Often, the nonsmooth part is expressed as the solution to a parametric convex problem.

Recommended reading

- Stewart, D. E. Dynamics with Inequalities: impacts and hard constraints. SIAM, 2011.
- Brogliato, B., and Tanwani, A. Dynamical systems coupled with monotone set-valued operators: Formalisms, applications, well-posedness, and stability. Siam Review 62, 1 (2020), 3–129.
- Acary, V., and Brogliato, B. Numerical methods for nonsmooth dynamical systems: applications in mechanics and electronics. Springer, Science and Business Media, 2008
- Facchinei, F., and Pang, J.-S. Finite-dimensional variational inequalities and complementarity problems, vol. 1-2. Springer-Verlag, 2003.
- Nurkanović, Armin. "Numerical methods for optimal control of nonsmooth dynamical systems." PhD diss., Dissertation, Universität Freiburg, 2023, 2023. https://publications.syscop.de/Nurkanovic2023f.pdf
- Aubin, J. P., and Cellina, A. Differential Inclusions: Set-Valued Maps and Viability Theory. Springer-Verlag, 1984.
- Smirnov, G. V. Introduction to the Theory of Differential Inclusions, vol. 41. American Mathematical Soc., 2002.

Cited references I

Branicky, M. S. (1998).

Multiple lyapunov functions and other analysis tools for switched and hybrid systems. *IEEE Transactions on automatic control*, 43(4):475–482.

Brogliato, B., Daniilidis, A., Lemarechal, C., and Acary, V. (2006).

On the equivalence between complementarity systems, projected systems and differential inclusions.

Systems & Control Letters, 55(1):45–51.

Henry, C. (1972).

Differential equations with discontinuous right-hand side for planning procedures. *Journal of Economic Theory*, 4(3):545–551.

Cited references II

Henry, C. (1973).

An existence theorem for a class of differential equations with multivalued right-hand side. *J. Math. Anal. Appl*, 41(1):179–186.

 Nurkanović, A., Sperl, M., Albrecht, S., and Diehl, M. (2024).
 Finite Elements with Switch Detection for Direct Optimal Control of Nonsmooth Systems. Numerische Mathematik, pages 1–48.

Serea, O.-S. (2003).

On reflecting boundary problem for optimal control. *SIAM journal on control and optimization*, 42(2):559–575.

Stewart, D. (1990).

A high accuracy method for solving odes with discontinuous right-hand side. *Numerische Mathematik*, 58(1):299–328.

Dynamic complementarity system

 $\dot{x} = F(x, u) \theta$ $0 = g_i(x) - \lambda_i - \mu, \ i = 1, \dots, n_f$ $0 \le \theta \perp \lambda \ge 0$ $1 = e^{\top} \theta$

If
$$x \in R_i$$
, then $\theta_i > 0$, $\lambda_i = 0$ (from complementarity)

•
$$\lambda_i = g_i(x) - \mu$$
 (from $abla_x \mathcal{L}(x, \lambda, \mu) = 0$)

Dynamic complementarity system

 $\begin{aligned} \dot{x} &= F(x, u) \ \theta \\ 0 &= g_i(x) - \lambda_i - \mu, \ i = 1, \dots, n_f \\ 0 &\leq \theta \perp \lambda \geq 0 \\ 1 &= e^\top \theta \end{aligned}$

If
$$x \in R_i$$
, then $\theta_i > 0$, $\lambda_i = 0$ (from complementarity)

•
$$\lambda_i = g_i(x) - \mu$$
 (from $\nabla_x \mathcal{L}(x, \lambda, \mu) = 0$)

Dynamic complementarity system

$$\dot{x} = F(x, u) \ \theta$$

$$0 = g_i(x) - \lambda_i - \mu, \ i = 1, \dots, n_f$$
$$0 \le \theta \perp \lambda \ge 0$$
$$1 = e^{\top} \theta$$

If
$$x \in R_i$$
, then $\theta_i > 0$, $\lambda_i = 0$ (from complementarity)

$$\lambda_i = g_i(x) - \mu \text{ (from } \nabla_x \mathcal{L}(x, \lambda, \mu) = 0 \text{)}$$

•
$$\mu = \min_j g_j(x)$$
 (from definition of R_i)

►
$$\lambda_i = g_i(x) - \min_j g_j(x)$$
 continuous functions!

Dynamic complementarity system

$$\dot{x} = F(x, u) \ \theta$$

$$0 = g_i(x) - \lambda_i - \mu, \ i = 1, \dots, n_f$$
$$0 \le \theta \perp \lambda \ge 0$$
$$1 = e^\top \theta$$

If $x \in R_i$, then $\theta_i > 0$, $\lambda_i = 0$ (from complementarity)

•
$$\lambda_i = g_i(x) - \mu$$
 (from $\nabla_x \mathcal{L}(x, \lambda, \mu) = 0$)

- $\mu = \min_j g_j(x)$ (from definition of R_i)
- $\lambda_i = g_i(x) \min_j g_j(x)$ continuous functions!
- At switch $\lambda_i = \lambda_j = 0 \implies g_i(x) g_j(x) = 0$ (region boundary)

The active set of the DCS

Dynamic complementarity system

$$\begin{split} \dot{x} &= F(x, u) \ \theta \\ 0 &= g_i(x) - \lambda_i - \mu, \ i = 1, \dots, n_f \\ 0 &\leq \theta \perp \lambda \geq 0 \\ 1 &= e^\top \theta \end{split}$$

DAE with fixed ${\mathcal I}$

$$\dot{x} = F_{\mathcal{I}}(x, u) \ \theta_{\mathcal{I}}$$
$$0 = g_{\mathcal{I}}(x) - \mu e,$$
$$1 = e^{\top} \theta_{\mathcal{I}}$$

 Locally well-behaved smooth ODE or DAE Active set

$$\mathcal{I}(x) \coloneqq \left\{ i \mid g_i(x) = \min_{j \in \mathcal{J}} g_j(x) \right\} = \left\{ i \mid \theta_i > 0 \right\}$$

Properties of the DCS

Sufficient conditions for the uniqueness of the solution

DAE with fixed \mathcal{I}

$\dot{x} = F_{\mathcal{I}}(x, u) \ \theta_{\mathcal{I}} \tag{2a}$

$$0 = g_{\mathcal{I}}(x) - \mu e, \tag{2b}$$

$$1 = e^{\top} \theta_{\mathcal{I}} \tag{2c}$$

Given $|\mathcal{I}| \geq 1$, define the matrix

$$M_{\mathcal{I}}(x) = \nabla g_{\mathcal{I}}(x)^{\top} F_{\mathcal{I}}(x, u) \in \mathbb{R}^{|\mathcal{I}| \times |\mathcal{I}|}.$$

Proposition

Suppose that for a fixed active set $\mathcal{I}(x(t)) = \mathcal{I}$ for $t \in [0,T]$, it holds that the matrix $M_{\mathcal{I}}(x(t))$ is invertible and $e^{\top} M_{\mathcal{I}}(x(t))^{-1} e \neq 0$ for all $t \in [0,T]$. Given the initial value x(0), then the DAE (2) has a unique solution for all $t \in [0,T]$.

Proof. Index reduction and implicit function theorem.

A very general class of nonsmooth dynamical systems is obtained by replacing the right-hand side of a smooth ODE with a set.

Differential Inclusions (DI)

The following equations is called a differential inclusion:

$$\dot{x}(t) \in F(t, x(t))$$
 for almost all $t \in [0, T]$, (3)

Here $F : \mathbb{R} \times \mathbb{R}^{n_x} \to \mathcal{P}(\mathbb{R}^{n_x})$ is a set-valued map which assigns to any point in time t and $x \in \mathbb{R}^{n_x}$ a set $F(t,x) \subseteq \mathbb{R}^{n_x}$. An element $y \in F(t,x(t))$ for a fixed (t,x(t)) is called a *selection*.

Definition (OSC, ISC, continuity)

A set-valued function $F(\cdot)$ is outer-semi continuous (OSC) (resp. inner semi-continuous (ISC)) at $x_0 \in X$ if for every $\epsilon > 0$ there exists a $\delta > 0$ such that $F(x) \subset F(x_0) + \epsilon \mathcal{B}(0)$ (resp. $F(x_0) \subset F(x) + \epsilon \mathcal{B}(0)$) for all $x \in x_0 + \delta \mathcal{B}(0)$. It is called continuous at x_0 if it both OSC and ISC at this point.

Theorem (Existence of solution, Theorem 4, p. 101 in Aubin, J. P., and Cellina, A., 1994)

Regard the initial value problem related to the DI (3) with the initial value $x(0) = x_0$. Suppose that the function $F : [0,T] \times \mathbb{R}^{n_x} \to \mathcal{P}(\mathbb{R}^{n_x})$ satisfies the following conditions:.

- i) $||y|| \le C(t)(1+||x||)$ for all x and $y \in F(t,x)$, where $C(\cdot)$ is an integrable function,
- ii) $F(t, \cdot)$ is outer semi-continuous for all t,
- iii) the set F(t, x) is nonempty and closed convex set for all t and x,

Then there exists an absolutely continuous solution $x(\cdot)$ to this initial value problem.

Definition

Let $K \subseteq \mathbb{R}^n$ be a closed convex set and $F : \mathbb{R}^n \to \mathbb{R}^n$. A variational inequality, denoted by VI(K, F), is the problem of finding $x \in \mathbb{R}^n$ such that

 $x \in K, \ F(x)^{\top}(y-x) \ge 0, \text{ for all } y \in K.$

The set of solutions to this problem is denoted by $\mathrm{SOL}(K,F).$

• $x \in K$ is a solution of VI(K, F) iff either F(x) = 0 or F(x) forms a non-obtuse angle with every vector y - x for all $y \in K$

•
$$\mathcal{N}_K(x) = \{ v \in \mathbb{R}^n \mid v^\top (y - x) \le 0, \text{ for all } y \in K \}$$
, $\operatorname{VI}(K, F)$ is the same as: $0 \ni F(x) + \mathcal{N}_K(x)$

Definition (Differential variational inequalities)

Given an initial value $x(0) = x_0$, a Differential Variational Inequality (DVI) is the problem of finding functions $x : [0,T] \to \mathbb{R}^{n_x}$ and $z : [0,T] \to \mathbb{R}^{n_z}$ such that

$$\dot{x}(t) = f(t, x(t), z(t)), \tag{4a}$$

$$z(t) \in K$$
, for almost all t , (4b)

$$0 \le (\hat{z} - z(t))^\top F(t, x(t), z(t)), \text{ for all } \hat{z} \in K \text{ and for almost all } t.$$
(4c)

DVI can be easily cast into differential inclusions

▶ Denote the set of all solutions, parameterized by x(t), of the VI (4c) by SOL(F(t, x(t), ·), K).

$$\dot{x}(t) \in f(t, x(t), \text{SOL}(F(t, x(t), \cdot), K)), \ x(0) = x_0.$$

Definition (Dynamic complementarity systems)

Given an initial value $x(0) = x_0$, a dynamic complementarity system is the problem of finding functions $x : [0,T] \to \mathbb{R}^{n_x}$ and $z : [0,T] \to \mathbb{R}^{n_z}$ such that

 $\dot{x}(t) = f(t, x(t), z(t)), \ x(0) = x_0, \\ 0 \le z(t) \perp F(t, x(t), z(t)) \ge 0, \text{ for almost all } t,$

- Discrete-time counterpart: nonlinear complementarity problems (e.g. KKT conditions of an NLP)
- Computationally very useful as NCPs can often be solved efficiently
- Found in nonsmooth mechanics: complementarity between gap function and normal contact forces
- Filippov systems can be casted into DCS (next lecture)
- ▶ $DI \supset DVI \supset DCS \supset ODE$.

Proposition (Proposition 1.1.3. in Facchinei and Pang 2003)

Let K be a closed convex cone. A vector $x \in \mathbb{R}^n$ is a solution to VI(K, F) if and only if it is a solution to the cone complementarity problem:

$$K \ni x \perp F(x) \in K^*, \tag{5}$$

where this compact notation means that $x \in K, F(x) \in K^*$ and $F(x)^{\top}x = 0$.

Proof. Let x be a solution to the VI(K, F). On one hand, since K is a cone, setting $y = 0 \in K$ we have from $x \in K$, $F(x)^{\top}(y - x) \ge 0$, for all $y \in K$, that $F(x)^{\top}x \le 0$. On the other hand, from the definition of a cone $x \in K$ it follows that $2x \in K$. Again, from the VI and setting y = 2x we obtain that $F(x)^{\top}x \ge 0$. Therefore, $F(x)^{\top}x = 0$. We further exploit that $F(x)^{\top}x \ge 0$, i.e., we can see that $F(x)^{\top}(y - x) \ge 0$ implies that $F(x)^{\top}y \ge 0$ for all $y \in K$, which is equivalent to $F(x) \in K^*$. Thus we have proven that x solves also (5). Conversely, if x solves (5), we have from the definition that $F(x)^{\top}y \ge 0$ for all $y \in K$ and $F(x)^{\top}x = 0$. Subtracting these relations we obtain that the VI holds.