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Work flow in smooth direct optimal control
First discretize, then optimize.

Problem formulation OptimizationTime discretization

OCP
In
te
gr
at
or
Multiple shooting

Single shooting

Direct
transcription

NLP

SQP

IPM

OCP = Optimal Control Problem

NLP = Nonlinear Program

SQP = Sequential Quadratic Programming

IPM = Interior-Point Method

Figure inspired by Lecture 1, Numerical Methods for Optimal Control: Introduction, 2022, by Mario Zanon and Sébastien Gros.
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The obvious way to tackle nonsmooth optimal control problems

Let us follow the path that worked so far:

1. Apply fixed-step size integration methods within direct single shooting, direct multiple
shooting or direct description to the nonsmooth optimal control problem.

2. Smooth the nonsmooth model, and apply standard direct methods.

Due to nonsmooth dynamics, the resulting optimization problem is nonsmooth only in a few
points.

What can go wrong?
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Tutorial nonsmooth optimal control problem
Tutorial example inspired by [Stewart and Anitescu, 2010]. Further studied in [Nurkanović et al., 2020].

Continuous-time OCP

min
x(·)∈C0([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) ∈ 2− sign(x(t)), t ∈ [0, 2]

Free initial value x(0) is the effective degree
of freedom.

Equivalent reduced problem

min
x0∈R

V (x0)
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Tutorial nonsmooth optimal control problem
Tutorial example inspired by [Stewart and Anitescu, 2010]. Further studied in [Nurkanović et al., 2020].

Continuous-time OCP

min
x(·),λ(·),s(·)

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− s(t)

0 ≤ λ(t)− x(t) ⊥ 1 + s(t) ≥ 0

0 ≤ λ(t) ⊥ 1− s(t) ≥ 0, t ∈ [0, 2]

Free initial value x(0) is the effective degree
of freedom.

Equivalent reduced problem

min
x0∈R

V (x0)
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Exact

Denote by V (x0) the nonsmooth objective
value for the unique feasible trajectory

starting at x(0) = x0.
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Denote by V (x0) the nonsmooth objective
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1. Direct optimal control with a time stepping IRK discretization
Tutorial example inspired [Stewart and Anitescu, 2010]. Further studied in [Nurkanović et al., 2020].

Continuous-time OCP

min
x(·),λ(·),s(·)

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− s(t)

0 ≤ λ(t)− x(t) ⊥ 1 + s(t) ≥ 0

0 ≤ λ(t) ⊥ 1− s(t) ≥ 0, t ∈ [0, 2]

▶ discretize the DCS with fixed step size
IRK methods

▶ e.g., midpoint rule, Gauss-Legendre IRK
with ns = 1, accuracy O(h2)
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Locally quadratic objective.
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1. Direct optimal control with a time stepping IRK discretization
Tutorial example inspired [Stewart and Anitescu, 2010]. Further studied in [Nurkanović et al., 2020].

Discrete-time OCP

min
x,z

N−1∑
n=0

ℓn(xn) + (xN − 5/3)2

s.t. xn+1 = ϕf (xn, zn)

0 = ϕint(xn, zn), n = 0, . . . N − 1

▶ discretize the DCS with fixed step size
IRK methods

▶ e.g., midpoint rule, Gauss-Legendre IRK
with ns = 1, accuracy O(h2)

▶ step size h = 0.2, i.e., N = 10
integration steps
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Exact
h = 0:2

Many artificial local minima and wrong
derivatives.
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▶ discretize the DCS with fixed step size
IRK methods

▶ e.g., midpoint rule, Gauss-Legendre IRK
with ns = 1, accuracy O(h2)

▶ step size h = 0.1, i.e., N = 20
integration steps
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derivatives.

4. Direct methods for nonsmooth nonlinear optimal control A. Nurkanović 5/41
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s.t. xn+1 = ϕf (xn, zn)
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▶ discretize the DCS with fixed step size
IRK methods

▶ e.g., midpoint rule, Gauss-Legendre IRK
with ns = 1, accuracy O(h2)

▶ step size h = 0.04, i.e., N = 50
integration steps
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Many artificial local minima and wrong
derivatives.

4. Direct methods for nonsmooth nonlinear optimal control A. Nurkanović 5/41



1. Direct optimal control with a time stepping IRK discretization
Tutorial example inspired [Stewart and Anitescu, 2010]. Further studied in [Nurkanović et al., 2020].

Discrete-time OCP

min
x,z
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n=0

ℓn(xn) + (xN − 5/3)2

s.t. xn+1 = ϕf (xn, zn)

0 = ϕint(xn, zn), n = 0, . . . N − 1

▶ discretize the DCS with fixed step size
IRK methods

▶ e.g., midpoint rule, Gauss-Legendre IRK
with ns = 1, accuracy O(h2)

▶ step size h = 0.02, i.e., N = 100
integration steps
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1. Direct optimal control with a time stepping IRK discretization
Tutorial example inspired [Stewart and Anitescu, 2010]. Further studied in [Nurkanović et al., 2020].

Discrete-time OCP

min
x,z

N−1∑
n=0

ℓn(xn) + (xN − 5/3)2

s.t. xn+1 = ϕf (xn, zn)

0 = ϕint(xn, zn), n = 0, . . . N − 1

▶ discretize the DCS with fixed step size
IRK methods

▶ e.g., midpoint rule, Gauss-Legendre IRK
with ns = 1, accuracy O(h2)

▶ step size h = 0.01, i.e., N = 200
integration steps
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Many artificial local minima and wrong
derivatives.
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1. Direct optimal control with a time stepping IRK discretization
Tutorial example inspired [Stewart and Anitescu, 2010]. Further studied in [Nurkanović et al., 2020].

Discrete-time OCP

min
x,z

N−1∑
n=0

ℓn(xn) + (xN − 5/3)2

s.t. xn+1 = ϕf (xn, zn)

0 = ϕint(xn, zn), n = 0, . . . N − 1

▶ discretize the DCS with fixed step size
IRK methods

▶ e.g., midpoint rule, Gauss-Legendre IRK
with ns = 1, accuracy O(h2)

▶ decreasing the step size might worsen
the situation
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h = 0:2
h = 0:1
h = 0:04
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Many artificial local minima and wrong
derivatives.

4. Direct methods for nonsmooth nonlinear optimal control A. Nurkanović 5/41



2. Direct optimal control with a standard IRK discretization - smoothing
Tutorial example inspired [Stewart and Anitescu, 2010]. Further studied in [Nurkanović et al., 2020].

Continuous-time OCP

min
x(·)∈C0([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− sign(x(t)), t ∈ [0, 2]

▶ midpoint rule, with h = 0.05; N = 40
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2. Direct optimal control with a standard IRK discretization - smoothing
Tutorial example inspired [Stewart and Anitescu, 2010]. Further studied in [Nurkanović et al., 2020].

Smoothed continuous-time OCP

min
x(·)∈C∞([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− tanh
(x(t)
σ

)
, t ∈ [0, 2]

Equivalent reduced problem

min
x0∈R

Vσ(x0)

▶ midpoint rule, with h = 0.05; N = 40

▶ solve smoothed OCP for different σ
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< = 0:5
< = 0:1
< = 0:05
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Tutorial example inspired [Stewart and Anitescu, 2010]. Further studied in [Nurkanović et al., 2020].
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▶ midpoint rule, with h = 0.05; N = 40
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▶ midpoint rule, with h = 0.05; N = 40

▶ solve smoothed OCP with σ = 0.05
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2. Direct optimal control with a standard IRK discretization - smoothing
Tutorial example inspired [Stewart and Anitescu, 2010]. Further studied in [Nurkanović et al., 2020].

Smoothed continuous-time OCP

min
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∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− tanh
(x(t)
σ

)
, t ∈ [0, 2]

Equivalent reduced problem

min
x0∈R

Vσ(x0)

▶ midpoint rule, with h = 0.05; N = 40

▶ solve smoothed OCP with σ = 0.025
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2. Direct optimal control with a standard IRK discretization - smoothing
Tutorial example inspired [Stewart and Anitescu, 2010]. Further studied in [Nurkanović et al., 2020].

Smoothed continuous-time OCP

min
x(·)∈C∞([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− tanh
(x(t)
σ

)
, t ∈ [0, 2]

Equivalent reduced problem

min
x0∈R

Vσ(x0)

▶ midpoint rule, with h = 0.05; N = 40

▶ solve smoothed OCP with σ = 0.0125
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2. Direct optimal control with a standard IRK discretization - smoothing
Tutorial example inspired [Stewart and Anitescu, 2010]. Further studied in [Nurkanović et al., 2020].
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0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− tanh
(x(t)
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)
, t ∈ [0, 2]

Equivalent reduced problem

min
x0∈R

Vσ(x0)

▶ midpoint rule, with h = 0.05; N = 40

▶ solve smoothed OCP with σ = 0.00625
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If h≫ σ, then the smooth approximation
behaves the same as the nonsmooth

problem!
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Work flow in nonsmooth direct optimal control
First discretize, then optimize.

OptimizationTime discretizationProblem formulation

OCP
In
te
g
ra
to
r

Multiple
shooting

Single shooting

Direct
transcription

nonsmooth
NLP

MPEC

SQP

IPM

Reg.
& Penalty

Active-set

OCP = Optimal Control Problem

NLP = Nonlinear Program

MPEC = Mathematical Program with Equilibrium Constraints

SQP = Sequential Quadratic Programming

IPM = Interior-Point Method

Reg. = Regularization
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How to resolve the issues with nonsmooth dynamics?

We need to:

1. Use a switch detecting integration method: restore accuracy of integration method.

2. Compute derivatives correctly.
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Computing derivatives of a discrete time system

Regard an ODE, for simplicity without a control:

x(t) = f(x(t)), x(tk) = xk, t ∈ [tk, tk+1]

In direct optimal control, with the use of an integrator we regard:

xk+1 = ψ(xk)

In Newton-type optimization we need to linearize this equation, e.g., at a feasible point
(x̄k+1, x̄k):

0 = ψ(x̄k)− x̄k+1 +
∂ψ(x̄k)

∂x
(x̂k − x̄k)− (x̂k+1 − x̄k+1)

0 = ψ(x̄k)− x̄k+1︸ ︷︷ ︸
=0

+
∂ψ(x̄k)

∂x
∆xk −∆xk+1

Change in final state by change initial state described by:

∆xk+1 =
∂ψ(x̄k)

∂x
∆xk

Here S(t) = dx(t;xk)
dxk

, i.e., S(tk+1) =
dx(tk+1;xk)

dxk
= dϕ(xk)

dxk
is the sensitivity matrix.
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Geometric interpretation of the sensitivity matrix S(t) - smooth case

Consider the smooth ODE:

ẋ = −x− 0.2x2
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Computation of S(t) - smooth case
An excellent reference on sensitivity computation is the PhD Thesis [Quirynen, 2017].

S(t) =
dx(t;xk)

dxk
, t > tk, S(tk) =

dx(tk;xk)

dxk
=

dxk
dxk

= I (initial value)

We take the first differentiate, then integrate:

dS(t)

dt
=

d

dt

dx(t;xk)

dxk
=

dẋ(t;xk)

dxk

=
df(x(t;xk))

dxk
=
∂f(x(t;xk)

∂xk

dx(t;xk)

dxk
=
∂f(x(t;xk))

∂xk
S(t)

Then, jointly integrate:ẋ(t)
Ṡ(t)

 =

 f(x(t))

∂f(x(t))
∂x S(t)

 , x(tk) = xk, S(tk) = Sk

But if the function f(x) is not differentiable in x?
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Computation of S(t) - smooth case
An excellent reference on sensitivity computation is the PhD Thesis [Quirynen, 2017].

S(t) =
dx(t;xk)

dxk
, t > tk, S(tk) =

dx(tk;xk)

dxk
=

dxk
dxk

= I (initial value)

We take the first differentiate, then integrate:

dS(t)

dt
=

d

dt

dx(t;xk)

dxk
=
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Geometric interpretation of the sensitivity matrix S(t) - nonsmooth case

Consider the nonsmooth ODE:

ẋ(t) =

{
3, if x < 0

1, if x > 0
, t ∈ [tk, tk+1]
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Solution map has kinks.
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Summary on sensitivities of nonsmooth systems

▶ Solution map ϕ(xk) has kinks, sensitivity
dϕ(xk)
dxk

jumps

▶ The discontinuity of f(x(t)) introduces
also jumps in S(t) in time

▶ Linearization can be arbitrarily wrong, if
there are changes of switches

▶ Correct computation of S(t) requires
switch detection and updates
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Computation of S(t) - nonsmooth case

Regard a bimodal system:

ẋ(t) =

{
f1(x(t)), ψ(x(t)) < 0,

f2(x(t)), ψ(x(t)) ≥ 0.
(1)

At some ts trajectory x(t) crosses switching surface ψ(x) = 0, e.g.:

▶ before crossing: ẋ = f1(x) for t ∈ [0, ts), with solution x1(t;x0)

▶ after crossing: ts we have ẋ = f2(x) for t ∈ (ts, T ] with solution x2(t;x1(ts;x0))

Trajectory pieces x1(t) and x2(t) glued together by condition:

ψ(x1(ts(x0);x0)) = 0.

Computing sensitivity for:

▶ t < ts - just like in the smooth case;

▶ t > ts - everything depends implicitly on the switching times ts(x0)
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Computation of S(t) via the Saltation matrix

Before and after the switch the S(t) obey linear variational differential equation (VDE)

Ṡi(t) =
∂fi(x)

∂x
Si(t), i = 1, 2

The function S(t) obeys smooth VDEs, on both sides of ts, but exhibits a jump at ts.

Proposition

Regard the system (1) with x(0) = x0 ∈ Ri on an interval [0, T ] with a switch at ts ∈ (0, T ).
Assume that the functions f1(x), f2(x), ψi,j(x) are continuously differentiable along
x(t), t ∈ [0, T ]. Assume the solution x(t) reaches the surface of discontinuity transversally, i.e.,
∇ψ(x(ts))⊤f1(x(ts)) > 0. Then the sensitivity S(T ; 0) of a solution x(t;x0) of the system
described by the ODE (1) is given by

S(T ; 0) = S(T ; t+s )J(x(ts;x0))S(t
−
s ; 0) with

J(x(ts;x0)) := I +
(f2(x(ts;x0))− f1(x(ts;x0)))∇ψ(x(ts;x0))⊤

∇ψ(x(ts;x0))⊤f1(x(ts;x0))
.
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Work flow in nonsmooth direct optimal control
First discretize, then optimize.

OptimizationTime discretizationProblem formulation

OCP
In
te
g
ra
to
r

Multiple
shooting

Single shooting

Direct
transcription

nonsmooth
NLP

MPEC

SQP

IPM

!

!

Reg.
& Penalty

Active-set

OCP = Optimal Control Problem

NLP = Nonlinear Program

MPEC = Mathematical Program with Equilibrium Constraints

SQP = Sequential Quadratic Programming

IPM = Interior-Point Method

Reg. = Regularization
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Switch detecting integrators in shooting methods is an old idea

Some historical references:

▶ 1950s - First derivations of the Saltation matrix [Aizerman and Gantmakher, 1958]

▶ 1980s - Multiple shooting, switch detection, first described in PhD thesis of Hans Georg
Bock [Bock, 1987] (multiple shooting introduce by Bock and Plitt [Bock and Plitt, 1984])

▶ 2000s - Other attempts with multiple shooting and SQP: with single step methods
(RK4) [Kirches, 2006], with multi-step methods (BDF) [Brandt-Pollmann, 2004]

▶ ...

▶ 2020s: More recent in robotics, hybrid iLQR [Kong et al., 2021], [Kong et al., 2024]

Can work sometimes quite good, but why not established yet?
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Newton’s method applied to nonsmooth optimization problems

For simplicity we consider

min
w
F (w)

where F : Rn → R is a piecewise smooth
function. Without constraints, KKT conditions
reduce to

∇F (w) = 0

SQP and IPM reduce to Newton’s method and
read as

wk+1 = wk − [∇2F (wk)]−1∇F (wk)
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Nonsmooth optimization examples: convex kink not at solution

min
w
F (w)

where

F (w) =

{
3w2 − 2, w < −1

w2, w > −1

▶ Sometimes the Newton steps “skip” over a
convex kink.
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Nonsmooth optimization examples: concave kink not at solution

min
w
F (w)

where

F (w) =

{
0.1w2 − 0.9, w < −1

w2, w > −1

▶ Sometimes the Newton steps “skip” over a
concave kink.
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Nonsmooth optimization examples: convex kink at solution

min
w
F (w)

where

F (w) =

{
(−w + 1)2 w < 0

(1.1w + 1)2, w > 0

▶ It may be difficult to converge to a convex
kink or to verify it

▶ At convex kink, we may need to compute
a subgradient, and check if 0 ∈ ∂F (w)

▶ More complicated to get “KKT
conditions” for nonsmooth problems, may
not work at other kinks

▶ Even more difficult: generic solver that
solves these “KKT conditions”
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line search may help, but still need to verify
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Nonsmooth optimization examples: concave kink lead to stalling
Stopping despite having a descent direction

min
w
F (w)

where

F (w) =

{
w + 0.5w2 w < 0

w3, w > 0

▶ Stops where right derivative is ∇F (w) = 0

▶ Not a “saddle point”, left derivative is
∇F (w) < 0

▶ Conclusion: we use the wrong optimality
conditions and step computation

▶ We resolve these problems in the Lectures
5 and 6
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{
w + 0.5w2 w < 0

w3, w > 0

▶ Stops where right derivative is ∇F (w) = 0

▶ Not a “saddle point”, left derivative is
∇F (w) < 0

▶ Conclusion: we use the wrong optimality
conditions and step computation

▶ We resolve these problems in the Lectures
5 and 6
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w

-0.5
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F
(w

)

F (w)
Initialization
Newton iterations
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Outline

1 Limitations of smooth methods

2 Limitations of nonsmooth methods

3 Finite Elements with Switch Detection (FESD)

4 FESD-Discretization of Optimal Control Problems

5 Conclusions and summary
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Work flow in nonsmooth direct optimal control
First discretize, then optimize.

OptimizationTime discretizationProblem formulation

OCP
In
te
gr
at
or
Multiple shooting

Single shooting

Direct
transcription

nonsmooth
NLP

MPEC

SQP

IPM

!

!

Reg.
& Penalty

Active-set

OCP = Optimal Control Problem

NLP = Nonlinear Program

MPEC = Mathematical Program with Equilibrium Constraints

SQP = Sequential Quadratic Programming

IPM = Interior-Point Method

Reg. = Regularization
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Main ideas of FESD
Based on [Baumrucker and Biegler, 2009, Nurkanović et al., 2024, Nurkanović and Diehl, 2022]

FESD overview

1. Transform nonsmooth system into dynamic complementarity system (Lecture 3)

2. Consider at least two integration intervals = finite elements

3. Use general implicit Runge-Kutta methods (Lectures 2)

4. Let step sizes hn be degrees of freedom

(under-determined system)

5. Cross complementarity conditions - adapt hn for switch detection

6. Step equilibration - remove degrees of freedom if no switch

ẋ ∈ FF(x, u) ⇐⇒

ẋ = F (x, u) θ

0 = g(x)− λ− eµ

0 ≤ θ ⊥ λ ≥ 0

1 = e⊤θ
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From Filippov to dynamic complementarity systems
Using the KKT conditions of the parametric LP

LP representation

ẋ = F (x, u) θ

with θ ∈ argmin
θ̃∈Rnf

g(x)⊤θ̃

s.t. 0 ≤ θ̃

1 = e⊤θ̃

where

F (x, u) := [f1(x, u), . . . , fnf
(x, u)] ∈ Rnx×nf

g(x) := [g1(x), . . . , gnf
(x)]⊤ ∈ Rnf

e := [1, 1, . . . , 1]⊤ ∈ Rnf

Express equivalently by optimality conditions:

Dynamic Complementarity System (DCS)

ẋ = F (x, u) θ (2a)

0 = g(x)− λ− eµ (2b)

0 ≤ θ ⊥ λ ≥ 0 (2c)

1 = e⊤θ (2d)

Compact notation

ẋ = F (x, u) θ

0 = GLP(x, θ, λ, µ),

▶ µ ∈ R and λ ∈ Rnf are Lagrange
multipliers

▶ (1c) ⇔ min{θ, λ} = 0 ∈ Rnf

▶ Together, (1b), (1c), (1d) determine the
(2nf + 1) variables (θ, λ, µ) uniquely
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Conventional discretization by Implicit Runge Kutta (IRK) method

Continuous time DCS

x(0) = x̄0,

ẋ(t) = v(t)

v(t) = F (x(t), u(t)) θ(t)

0 = g(x(t))− λ(t)− eµ(t)

0 ≤ θ(t) ⊥ λ(t) ≥ 0

1 = e⊤θ(t), t ∈ [0, T ]

Discrete time IRK-DCS equation

x0,0 = x̄0, xn+1,0 = xn,0 + h
∑ns

i=1 bivn,i

xn,i = xn,0 + h
∑ns

j=1 ai,jvn,j

vn,i = F (xn,i, un,i) θn,i

0 = g(xn,i)− λn,i − eµn,i

0 ≤ θn,i ⊥ λn,i ≥ 0

1 = e⊤θn,i, i = 1, . . . , ns, n = 0, . . . , N − 1

Notation: xn,i ∈ Rnx , θn,i ∈ Rm etc. RK stage values with:
▶ n ∈ {0, 1, . . . , N} - index of integration step; step length h := T/N
▶ i, j ∈ {0, 1, . . . , ns} - index of intermediate IRK stage / collocation point
▶ ai,j and bi - Butcher tableau entries of Implicit Runge Kutta method

t
t0

x0,0

t1

x1,0

t2

x2,0

t3

x3,0

t0,1 t0,2 . . . t0,ns

v1,1 v1,2 . . . v1,ns
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Finite Elements with Switch Detection (FESD)

FESD is a novel DCS discretization method based on three ideas:

▶ make step sizes hn free, ensure
∑N−1

n=0 hn = T (cf. [Baumrucker and Biegler, 2009])

▶ allow switches only at element boundaries, enforce via cross-complementarities,

▶ remove spurious degrees of freedom via step equilibration.

0 0.5 1 1.5

t

-2

-1

0

1

x
(t

)

conventional
discretization

0 0.5 1 1.5

t

-2

-1

0

1

x
(t

)

variable step sizes and
cross-complementarities

0 0.5 1 1.5

t

-2

-1

0

1

x
(t

)

FESD discretization
with step equilibration
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Conventional DCS and FESD discretization without step equilibration

Time-stepping discretization

x0,0 = x̄0, h = T/N

xn+1,0 = xn,0 + h
∑ns

i=1 bivn,i

xn,i = xn,0 + h
∑ns

j=1 ai,jvn,j

vn,i = F (xn,i, un,i) θn,i

0 = g(xn,i)− λn,i − eµn,i

0 ≤ θn,i ⊥ λn,i ≥ 0

1 = e⊤θn,i

for i = 1, . . . , ns

and n = 0, . . . , N − 1

FESD discretization without step equilibration

x0,0 = x̄0,
∑N−1

n=0 hn = T

xn+1,0 = xn,0 + hn
∑ns

i=1 bivn,i

xn,i = xn,0 + hn
∑ns

j=1 ai,jvn,j

vn,i = F (xn,i, un,i) θn,i

0 = g(xn,i′)− λn,i′ − eµn,i′

0≤ θn,i ⊥ λn,i′ ≥ 0 (cross-complementarities)

1 = e⊤θn,i

for i = 1, . . . , ns and n = 0, . . . , N−1

and i′ = 0, 1, . . . , ns

▶ N extra variables (h0, . . . , hN−1) restricted by one extra equality

▶ Additional multipliers λn,0, µn,0 are uniquely determined
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Conventional DCS and FESD discretization with step equilibration

Time-stepping discretization

x0,0 = x̄0, h = T/N

xn+1,0 = xn,0 + h
∑ns

i=1 bivn,i

xn,i = xn,0 + h
∑ns

j=1 ai,jvn,j

vn,i = F (xn,i, un,i) θn,i

0 = g(xn,i)− λn,i − eµn,i

0 ≤ θn,i ⊥ λn,i ≥ 0

1 = e⊤θn,i

for i = 1, . . . , ns

and n = 0, . . . , N − 1

FESD discretization with step equilibration

x0,0 = x̄0,
∑N−1

n=0 hn = T

xn+1,0 = xn,0 + hn
∑ns

i=1 bivn,i

xn,i = xn,0 + hn
∑ns

j=1 ai,jvn,j

vn,i = F (xn,i, un,i) θn,i

0 = g(xn,i′)− λn,ii′ − eµn,i′

0≤ θn,i ⊥ λn,i′ ≥ 0 (cross-complementarities)

1 = e⊤θn,i

0 = ν(θn′ , θn′+1, λn′ , λn′+1) · (hn′−hn′+1)

for i = 1, . . . , ns and n = 0, . . . , N−1

and i′ = 0, 1, . . . , ns and n′ = 0, . . . , N−2

▶ N extra variables (h0, . . . , hN−1) restricted by one extra equality

▶ Additional multipliers λn,0, µn,0 are uniquely determined

▶ Indicator function ν(θn′ , θn′+1, λk′ , λk′+1) only zero if a switch occurs
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Multipliers in conventional and FESD discretization

Time stepping discretization: FESD discretization:

Example revisited: comparison of the two schemes- algebraic variables

Unrestricted | © Siemens 2021 | Nurkanović | 6.7.2021| Internal Workshop on Control, Estimation, Learning and Optimization

Standard collocation Variable finite elements 

Page 33

Lemma (Cross complementarity)

If any θn,j,i with j = 1, . . . , ns is positive, then all λn,j′,i with j
′ = 0, . . . , ns must be zero.

Conversely, if any λn,j′,i is positive, then all θn,j,i are zero.

Notation λn,j,i - n - finite element, j - RK stage, i - component of vector
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Multipliers in conventional and FESD discretization

Time stepping discretization: FESD discretization:

Example revisited: comparison of the two schemes- algebraic variables

Unrestricted | © Siemens 2021 | Nurkanović | 6.7.2021| Internal Workshop on Control, Estimation, Learning and Optimization

Standard collocation Variable finite elements 

Page 33

FESD’s cross-complementarities exploit the fact that the multiplier λi(t) is continuous in time.
On boundary, λi(tn) must be zero if θi(t) > 0 for any t ∈ [tn−1, tn+1] on the adjacent intervals.
This implicitly imposes the constraint gi(xn)− gj(xn) = 0.
=⇒ hn adapts for exact switch detection
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Step equilibration

▶ if no switches happen, cross complementarity implied by standard complementarity

▶ spurious degrees of freedom in hn: more degrees of freedom than equations

▶ exploit complementarity of θn, λn to encode switching logic

▶ define (very complicated) switch indicator function ν (cf. [Nurkanović, 2023]:

ν(θn, θn+1, λn, λn+1) :=

{
positive, if no switch at tn+1

0, if switch at tn+1

▶ step equilibration:

0 = ν(θn, θn+1, λn, λn+1) · (hn−hn+1), n = 0, . . . , N−2

▶ Summary:

▶ If switch happens, then hn is determined by cross complementarity.
▶ If no switch happens, then hn is determined by step equilibration.
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Step equilibration

▶ if no switches happen, cross complementarity implied by standard complementarity

▶ spurious degrees of freedom in hn: more degrees of freedom than equations

▶ exploit complementarity of θn, λn to encode switching logic

▶ define (very complicated) switch indicator function ν (cf. [Nurkanović, 2023]:
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Numerical solution without equilibration
Example with four switches

Indicator function over time: Step size over time:Uniform grid reformulation 

Unrestricted | © Siemens 2021 | Nurkanović | 6.7.2021| Internal Workshop on Control, Estimation, Learning and OptimizationPage 58

The optimizer varies the step-size in random way
and plays too much with the accuracy

Optimizer varies step size randomly, potentially playing with integration errors.
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Numerical solution with equilibration
Example with four switches

Indicator function over time: Step size over time:
Uniform grid reformulation 

Unrestricted | © Siemens 2021 | Nurkanović | 6.7.2021| Internal Workshop on Control, Estimation, Learning and OptimizationPage 59

We have a step-size change only at switches if we add the 
step-size penalty term

Equidistant grid on each ”switching stage”. Jumps exactly at switching times.
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Integration order plots for FESD and IRK time stepping
Revisit example from Lecture 3

Tutorial example

ẋ =

{
A1x, ∥x∥22 < 1,

A2x, ∥x∥22 > 1,

with A1 =

 1 2π

−2π 1

 , A2 =

 1 −2π

2π 1


x(0) = (e−1, 0) for t ∈ [0, π2 ].

Compute global integration error E(T ) using different
strategies.
Compute solution approximation:

1. With fixed step size IRK methods (time-stepping).

2. FESD with same underlying IRK methods.

-1 0 1

x1

-1.5

-1

-0.5

0

0.5

1

1.5

x
2
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FESD recovers high integration order for switched systems

Standard vs. FESD

10−2 10−1
10−15

10−10

10−5

100

h

E
(T

)

Midpoint Rule 2
Gauss-Legendre 4
Gauss-Legendre 6
Gauss-Legendre 8

10−2 10−1
10−15

10−10

10−5

100

h

Integration error E(T ) at time T = π/2 vs. step-size h, for different IRK methods.
FESD discretization recovers high integration order

4. Direct methods for nonsmooth nonlinear optimal control A. Nurkanović 35/41
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Outline

1 Limitations of smooth methods

2 Limitations of nonsmooth methods

3 Finite Elements with Switch Detection (FESD)

4 FESD-Discretization of Optimal Control Problems

5 Conclusions and summary
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Discretizing optimal control problems with FESD

Discretized optimal control problem

min
s,z,u

N−1∑
k=0

ΦL(sk, zk, uk) + E(sN )

s.t. s0 = x̄0

sk+1 = Φf (sk, zk, uk)

0 = Φint(sk, zk, uk)

0 ≥ h(sk, uk), k = 0, . . . , N−1

0 ≥ r(sN )

Control horizon [0, T ] with N control stages

▶ States at control grid points
s = (s0, . . . , sN )

▶ Piecewise controls u = (u0, . . . , uN−1)

▶ FESD with NFE finite elements applied
on every control interval

▶ Φint summarizes all internal FESD
equations: RK, cross complementarity,
step equilibration,...

▶ z = (z0, . . . , zN−1) - all interval
variables: internal states, stage values of
states and multipliers, step sizes, ...
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▶ States at control grid points
s = (s0, . . . , sN )

▶ Piecewise controls u = (u0, . . . , uN−1)

▶ FESD with NFE finite elements applied
on every control interval

▶ Φint summarizes all internal FESD
equations: RK, cross complementarity,
step equilibration,...

▶ z = (z0, . . . , zN−1) - all interval
variables: internal states, stage values of
states and multipliers, step sizes, ...
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FESD-discretized optimal control problems are MPCC

Discretized optimal control problem

min
s,z,u

N−1∑
k=0

ΦL(sk, zk, uk) + E(sN )

s.t. s0 = x̄0

sk+1 = Φf (sk, zk, uk)

0 = Φint(sk, zk, uk)

0 ≥ h(sk, uk), k = 0, . . . , N−1

0 ≥ r(sN )

Collect w = (s, z, u) ∈ Rnw

Mathematical programs with
complementarity constraints (MPCC) are
more difficult than standard NLPs

NLP with Complementarity Constraints

min
w∈Rnw

F (w)

s.t. 0 = G(w)

0 ≥ H(w)

0 ≤ G1(w) ⊥ G2(w) ≥ 0

Standard and cross complementarity
constraints summarized in

0 ≤ G1(w) ⊥ G2(w) ≥ 0
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Revisiting the OCP example - now with FESD
Tutorial example inspired by [Stewart & Anitescu, 2010]

Continuous-time OCP

min
x(·)∈C0([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− sign(x(t)), t ∈ [0, 2]

Free initial value x(0) is the effective degree
of freedom.

Equivalent reduced problem

min
x0∈R

V (x0)

-2 -1.8 -1.6 -1.4 -1.2 -1

x0

1.4

1.5

1.6

1.7

1.8

1.9

2

V
(x

0
)

Exact

▶ Denote by V (x0) the nonsmooth
objective value for the unique feasible
trajectory starting at x(0) = x0.
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Revisiting the OCP example - now with FESD
Tutorial example inspired by [Stewart & Anitescu, 2010]
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Exact
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Time stepping - single NLP
Time stepping - homotopy
FESD - single NLP
FESD - homotopy
Analytic Solution

▶ no spurious local minima, correct sensitivities

▶ convergence to the ”true” local minimum, both with homotopy and without it

▶ accuracy of order O(hp), in contrast to standard approach with only O(h)

▶ FESD solves the accuracy and convergence issues
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nosnoc
An open source tool for optimal control of nonsmooth systems

Overview

▶ All reformulations are automated,
simply provide problem and model data.

▶ A wide variety of features: DAEs,
nonlinear and quadratic costs, general
(including complementarity) path
constraints, and terminal constraints.

▶ C++ code generation for embedded
MPC

▶ Developed and Maintained by Anton
Pozharskiy, Jonathan Frey, and Armin
Nurkanović.

Available Systems

nosnoc supports various systems such as:

▶ Piecewise Smooth Systems (via Stewart or
Heaviside Step reformulations).

▶ Heaviside Step Differential
Inclusions [Nurkanović et al., 2024].

▶ Complementarity Lagrangian systems (via
FESD-J [Nurkanović et al., 2024] or
time-freezing [Nurkanović et al., 2023]).

▶ Projected Dynamical
Systems [Pozharskiy et al., 2024].

github.com/nosnoc/nosnoc

github.com/nosnoc/nosnoc_py

4. Direct methods for nonsmooth nonlinear optimal control A. Nurkanović 40/41
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Conclusions and summary

▶ Finite Elements with Switch Detection (FESD) allow highly accurate simulation and
optimal control for nonsmooth systems of level NSD2

▶ Following similar lines, FESD can be derived for the Heaviside step reformulation

▶ Key ideas: make step sizes degrees of freedom and introduce implicit relations that locate
the switches

▶ Switch detection not only essential for high accuracy, but also for correct sensitivities
(no spurious solutions)

▶ FESD solves many of the issues that standard methods have: integration accuracy,
convergence of sensitivities

▶ Main practical difficulty: solving Mathematical Programs with Complementarity
Constraints (MPCC)
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Derivation of the Saltation matrix

Before and after the switch the S(t) obey linear variational differential equation (VDE)

Ṡi(t) =
∂fi(x)

∂x
Si(t), i = 1, 2

The function S(t) obeys smooth VDEs, on both sides of ts, but exhibits a jump at ts.

Proposition

Regard the system (1) with x(0) = x0 ∈ Ri on an interval [0, T ] with a switch at ts ∈ (0, T ).
Assume that the functions f1(x), f2(x), ψi,j(x) are continuously differentiable along
x(t), t ∈ [0, T ]. Assume the solution x(t) reaches the surface of discontinuity transversally, i.e.,
∇ψ(x(ts))⊤f1(x(ts)) > 0. Then the sensitivity S(T ; 0) of a solution x(t;x0) of the system
described by the ODE (1) is given by

S(T ; 0) = S(T ; t+s )J(x(ts;x0))S(t
−
s ; 0) with

J(x(ts;x0)) := I +
(f2(x(ts;x0))− f1(x(ts;x0)))∇ψ(x(ts;x0))⊤

∇ψ(x(ts;x0))⊤f1(x(ts;x0))
.

(3)
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Proof follows similar lines as in [Stewart and Anitescu, 2010]

For t < ts, the solution x(t;x0) satisfies the ODE ẋ = fi(x(t;x0)) and the sensitivity matrix

Sx(t, 0;x0) =
∂x(t;x0)

∂x0
obeys:

Ṡx(t) =
∂f(x)

∂x
Sx(t), Sx(0) = I.

At t = ts the solution reaches the surface of discontinuity:

ψi,j(x(ts(x0;x0))) = 0. (4)

For t > ts, one has y(t) = f∗(y(t; y0)) which is related to the solution via

y(t; y0) = x(t+ ts(x0);x0), y0(x0) = x(ts(x0);x0). (5)
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Proof of the proposition (2/3)

Note that y(t− ts(x0);x0) = x(t;x0). Therefore, the sensitivity, for t > ts can be computed via

Sx(t, 0;x0) =
∂x(t, x0)

∂x0
=
∂y(t− ts(x0)); y0(x0)

∂x0

=
∂y(t− ts

∂t

∂ts(x0)

∂x0

⊤
+ Sy(t− ts; y0)

∂y0(x0)

∂x0
,

= −f∗(x(t))
∂ts(x0)

∂x0

⊤
+ Sy(t− ts; y0)

∂y0(x0)

∂x0
,

(6)

We can compute ∂y0(x0)
∂x0

at t = t−s using (5)

∂y0(x0)

∂x0
=
∂x(ts(x0);x0)

∂x0
= fi(x)

∂ts(x0)

∂x0

⊤
+ Sx(t−s , 0;x0). (7)

Using the implicit function theorem (cf. [Dontchev and Rockafellar, 2014, Theorem 1B.1]) for
(4), again at t = t−s we obtain

∂ts(x0)

∂x0

⊤
= −∇ψi,j(x(ts(x0;x0)))

⊤Sx(t−s , 0;x0)

∇ψi,j(x(ts(x0;x0)))⊤fi(x)
. (8)
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Proof of the proposition (3/3)

Let t→ t+s in (6), then Sy(t− ts; y0) → I. Plugging (7) and (8) into (6) for the remaining
unknown terms we obtain

Sx(t+s , 0;x0) = f∗(x(t))
∇ψi,j(x(ts(x0;x0)))

⊤Sx(t−s , 0;x0)

∇ψi,j(x(ts(x0;x0)))⊤fi(x)

− fi(x)
∇ψi,j(x(ts(x0;x0)))

⊤Sx(t−s , 0;x0)

∇ψi,j(x(ts(x0;x0)))⊤fi(x)
Sx(t−s , 0;x0) + Sx(t−s , 0;x0)

(9)

Finally, from the chain rule we have Sx(T, 0, x0) = Sx(T, t+s , x0)S
x(t+s , 0, x0) and (9) we

obtain (3).
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Switch detection - example

Suppose that x(t) crosses from R1 to R2 and recall that µ = minj gj(x)
Continuous time:

▶ Before switch: θ1(t) > 0, λ1(t) = 0, and θ2(t) = 0, λ2 ≥ 0

▶ After switch: θ1(t) = 0, λ1(t) ≥ 0, and θ2(t) > 0, λ2 = 0
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Switch detection - example

Suppose that x(t) crosses from R1 to R2 and recall that µ = minj gj(x)
Discrete time (switch between the n-th and n+ 1-st finite element):

▶ Before switch: θn,j,1 > 0, λn,j,1 = 0, and θn,j,2 = 0, λn,j,2 ≥ 0

▶ After switch: θn,j,1 = 0, λn,j,1 > 0, and θn,j,2 > 0, λn,j,2 = 0
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Switch detection - example

Suppose that x(t) crosses from R1 to R2 and recall that µ = minj gj(x)
Discrete time (switch between the n-th and n+ 1-st finite element):

▶ Before switch: θn,j,1 > 0, λn,j,1 = 0, and θn,j,2 = 0, λn,j,2 ≥ 0

▶ After switch: θn,j,1 = 0, λn,j,1 > 0, and θn,j,2 > 0, λn,j,2 = 0

From Lemma 1 it follows that λn,ns,1 = λn,ns,2 = 0

Switch detection conditions

g1(xn+1) = λn,ns,1 − µn,ns
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Switch detection condition

g1(xn+1) = 0− g2(xn+1)
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Switch detection - example

Suppose that x(t) crosses from R1 to R2 and recall that µ = minj gj(x)
Discrete time (switch between the n-th and n+ 1-st finite element):

▶ Before switch: θn,j,1 > 0, λn,j,1 = 0, and θn,j,2 = 0, λn,j,2 ≥ 0

▶ After switch: θn,j,1 = 0, λn,j,1 > 0, and θn,j,2 > 0, λn,j,2 = 0

From Lemma 1 it follows that λn,ns,1 = λn,ns,2 = 0

Switch detection conditions

0 = g1(xn+1)− g2(xn+1) = ψ12(xn+1)

Implies constraint such that hn must adapt for exact switch detection!
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Summary of FESD theoretical results

1. An FESD problem needs to solve a nonlinear complementarity problem (NCP) to advance
the integration. The solutions of these NCP are locally unique.
▶ For a given point determine which constraint cross comp. and step eq. are binding, and

which implicitly satisfied.
▶ Obtain square system and apply implicit function theorem.

2. Convergence of the FESD method to a Filippov solution of the underlying system with
accuracy O(hp) is proven. Here, p is the order of the underlying smooth IRK method.
▶ Solution approximation and true solution predict same active set.
▶ Switching time accuracy also O(hp).

3. Convergence of numerical sensitivities to the true value with O(hp) is given.
▶ Cross. comp. implicitly enforce switching condition and lead to correct sensitivities.
▶ The Stewart & Anitescu problem is solved.
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Optimal control benchmark with FESD
Benchmark example with entering/leaving sliding mode

OCP with sliding modes

min
x(·),u(·)

∫ 4

0

u(t)⊤u(t) + v(t)⊤v(t) dt

s.t. x(0) = (
2π

3
,
π

3
, 0, 0)

ẋ(t) =

−sign(c(x(t))) + v(t)

u(t)


− 2e ≤ v(t) ≤ 2e

− 10e ≤ u(t) ≤ 10e t ∈ [0, 4],

q(T ) = (−π
6
,−π

4
)

States q, v ∈ R2 and control u ∈ R2,
x = (q, v)

Switching functions c(x) =

q1 + 0.15q22

0.05q31 + q2



−2 −1 0 1 2

−1

0

1

q1
q
2

q(t)

c1(x) = 0

c2(x) = 0
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FESD vs standard IRK - number of function evaluations
Benchmark on an optimal control problem with nonlinear sliding modes
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Radau-IIA-FESD Radau-IIA-Std
Lobatto-IIIC-FESD Lobatto-IIIC-Std
Gauss-Legendre-FESD Gauss-Legendre-Std
Explicit-RK-FESD Explicit-RK-Std

Terminal constraint satisfaction vs. number of stage points
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FESD vs standard IRK - CPU Time
Benchmark on an optimal control problem with nonlinear sliding modes
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Gauss-Legendre-FESD Gauss-Legendre-Std
Explicit-RK-FESD Explicit-RK-Std

Terminal constraint satisfaction vs. CPU time
FESD one million times more accurate than Std. for CPU time of ≈ 2 s
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