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Mathematical programs with complemenatarities constraints (MPCC)

MPCC

min
w∈Rn

f(w) (1a)

s.t. g(w) = 0, (1b)

h(w) ≥ 0, (1c)

0 ≤ G(w) ⊥ H(w) ≥ 0. (1d)
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min
w∈Rn
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2 s.t. 0 ≤ w1 ⊥ w2 ≥ 0

1. G(w) ≥ 0, H(w) ≥ 0, Gi(w)Hi(w) ≤ 0, i = 1, . . . ,m,

2. G(w) ≥ 0, H(w) ≥ 0, G(w)⊤H(w) ≤ 0,

3. G(w) ≥ 0, H(w) ≥ 0, G(w)⊤H(w) = 0,

4. G(w) ≥ 0, H(w) ≥ 0, Gi(w)Hi(w) = 0, i = 1, . . . ,m,

5. ΦC(G(w), H(w)) = 0.
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w2
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2 s.t. 0 ≤ w1 ⊥ w2 ≥ 0

Reformulated into an nonlinear program (NLP) by replacing (1d) by:

1. G(w) ≥ 0, H(w) ≥ 0, Gi(w)Hi(w) ≤ 0, i = 1, . . . ,m,

2. G(w) ≥ 0, H(w) ≥ 0, G(w)⊤H(w) ≤ 0,
3. G(w) ≥ 0, H(w) ≥ 0, G(w)⊤H(w) = 0,
4. G(w) ≥ 0, H(w) ≥ 0, Gi(w)Hi(w) = 0, i = 1, . . . ,m,
5. ΦC(G(w), H(w)) = 0.
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Mathematical programs with complemenatarities constraints (MPCC)

MPCC

min
w∈Rn

f(w) (1a)

s.t. g(w) = 0, (1b)

h(w) ≥ 0, (1c)

0 ≤ G(w) ⊥ H(w) ≥ 0. (1d) -1 0 1 2

w1

-1

-0.5

0

0.5

1

1.5

2

w
2

f(w)
0 5 w1 ? w2 6 0
w$

Reformulated into an nonlinear program (NLP) by replacing (1d) by:

1. G(w) ≥ 0, H(w) ≥ 0, Gi(w)Hi(w) ≤ 0, i = 1, . . . ,m,

2. G(w) ≥ 0, H(w) ≥ 0, G(w)⊤H(w) ≤ 0,

3. G(w) ≥ 0, H(w) ≥ 0, G(w)⊤H(w) = 0,

4. G(w) ≥ 0, H(w) ≥ 0, Gi(w)Hi(w) = 0, i = 1, . . . ,m,

5. ΦC(G(w), H(w)) = 0.

5. MPECs: nonsmooth modelling and optimality conditions A. Nurkanović 2/41
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Vertical form of an MPCC

Usually, we keep the complementarity constraints as simple as possible:

Generic MPCC

min
w∈Rn

f(w)

s.t. g(w) = 0,

h(w) ≥ 0,

0 ≤ G(w) ⊥ H(w) ≥ 0.
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Vertical form of an MPCC

Usually, we keep the complementarity constraints as simple as possible:

Vertical form MPCC

min
w∈Rn

w1,w2∈Rm

f(w)

s.t. g(w) = 0,

h(w) ≥ 0,

w1 −G(w) = 0,

w2 −H(w) = 0,

0 ≤ w1 ⊥ w2 ≥ 0.
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Vertical form of an MPCC

Usually, we keep the complementarity constraints as simple as possible:

Vertical form MPCC

min
w∈Rn

f(w)

s.t. g(w) = 0,

h(w) ≥ 0,

0 ≤ w1 ⊥ w2 ≥ 0.

where w = (w0, w1, w2) ∈ Rn, w0 ∈ Rp, w1, w2 ∈ Rm, n = p+ 2m
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MPCC vs MPEC

Mathematical programs with equilibrium constraints (MPECs)

min
w∈Rn

f(w)

s.t. w ∈ U
w1 = argmin

ŵ1

F (ŵ1;w0) s.t. ŵ1 ∈ L(w0)

▶ Instead of the lower level optimization problem, we may write a variational inequality, i.e.,
an equilibirum constraints.

▶ Because of the easier pronunciation, we often say MPEC but we mean MPCC.

▶ MPECs are more general than MPCCs, e.g., if the lower-level problem is nonconvex, then
an MPCC is a relaxation of the MPEC.
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MPCC vs MPEC

MPCC as MPEC

min
w∈Rn

f(w)

s.t. g(w) = 0,

h(w) ≥ 0,

w1 ≥ 0,

w2 = argmin
ŵ2
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An incomplete list of MPEC applications

▶ optimal control of hybrid/nonsmooth constraints (this winter
school) [Baumrucker and Biegler, 2009, Guo and Ye, 2016, Vieira et al., 2019,
Nurkanović, 2023]

▶ optimization with piecewise smooth functions, abs-normal
froms [Hegerhorst-Schultchen et al., 2020]

▶ bi-level optimization (if the lower level problem is convex) [Kim et al., 2020]

▶ modeling of logical constraints [Pozharskiy et al., 2024]

▶ inverse optimization [Albrecht and Ulbrich, 2017, Hu et al., 2012]

▶ process and chemical engineering [Baumrucker et al., 2008, Biegler, 2010]

▶ robotics [Wensing et al., 2023]

▶ district heating networks [Krug et al., 2021]

Some literature on MPECs I would recommend: [Luo et al., 1996, Kim et al., 2020, Hu et al., 2012, Scheel and Scholtes, 2000,
Flegel and Kanzow, 2005, Fletcher and Leyffer, 2004, Nurkanović et al., 2024, Kanzow and Schwartz, 2015,
Hoheisel et al., 2013, Biegler, 2010, Hu et al., 2012]
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How complementarity constraints should NOT be used

Integrality conditions

w1 ∈ {0, 1}

are equivalent to

w2 = 1− w1

0 ≤ w1 ⊥ w2 ≥ 0
0 0.5 1 1.5
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0 5 w1 ? w2 6 0

▶ Feasible set consists of two isolate points.

▶ May converge only if initialized very close to solution.

▶ Problems with disjoint feasible regions should be avoided.

▶ Bad idea as sin(wπ) = 0 to obtain w ∈ Z.
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Biegler’s guidelines for good MPEC modeling
Can be found in Chapter 11 of [Biegler, 2010].

1. To model discrete decisions, piecewise smooth functions, ..., start with a convex lower
level problem, e.g.,

min
y

F (w0)y s.t. yℓ ≤ y ≤ yu.

Problem is parametric in switching function F (w0).

2. Whenever possible, formulate the problem such that constraints on upper level variables
w0 do not interfere with lower level constraints.
If there are no constraints connecting w0 and y, for F (w0) = 0, y ∈ [yℓ, yu] - avoiding
disconnected feasible sets.

3. Apply KKT conditions, to reformulate MPEC to MPCC:

F (w0)− λℓ + λu = 0,

0 ≤ y − yℓ ⊥ λℓ ≥ 0,

0 ≤ yu − y ⊥ λu ≥ 0.

4. If possible, do some variable eliminations in the KKT conditions.
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Modeling the sign(·) and Heaviside step function

Set-valued Heaviside step function

step(F (w)) =


{1}, F (w) > 0,

[0, 1], F (w) = 0,

{0}, F (w) < 0.

step(F (w)) = argmin
y∈R

− F (w)y (2a)

s.t. 0 ≤ y ≤ 1. (2b)

KKT conditions of the LP (2):

F (w) = λp − λn,

0 ≤ y ⊥ λn ≥ 0,

0 ≤ 1− y ⊥ λp ≥ 0.

▶ For F (w) > 0 =⇒ y = 1, λn = 0 positive part: λp = max(0, F (w).

▶ For F (w) < 0 =⇒ y = 0, λp = 0, negative part: λn = max(0,−F (w)).

▶ sign(F (w)) by setting lower bound to −1 in LP (2), in this case |F (w)| = F (w)y.

▶ Cannot model discontinuous functions, only their set-valued extensions.
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Modeling the abs(·) function

Formulation 1:

▶ To model z = |F (w)|, use set-valued y = sign(F (w)) function and identity:

z = |F (w)| = F (w)y.

Formulation 2:

▶ To model z = |F (w)|, use set-valued y = step(F (w)) function and identity:

z = |F (w)| = yF (w) + (1− y)(−F (w)) = (2y − 1)F (w)

Formulation 3:

▶ To model z = |F (w)|, use single complementarity constraints:

F (w) = λp − λn

0 ≤ λp ⊥ λn ≥ 0

▶ Combining the positive and negative part, z = λp + λn
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Modeling the max(·, ·) function

Formulation 1: to model z = max(F1(w), F2(w)), use step LP with the argument
F1(w)− F2(w), i.e.:

min
y∈R

(F2(w)− F1(w))y

s.t. 0 ≤ y ≤ 1.

and compute z = yF1(w) + (1− y)F2(w).

Formulation 2: exploit that

z = max(F1(w), F2(w)) = F1(w) + min(0,−(F1(w)− F2(w)))

and use that

▶ F1(w) > F2(w) =⇒ min(0,−(F1(w)− F2(w))) = 0.
▶ F1(w) < F2(w) =⇒ min(0,−(F1(w)− F2(w))) = −F1(w) + F2(w).
▶ Using the positive and negative part of F1(w)− F2(w) we have

z = F1(w) + λn,

F1(w)− F2(w) = λp − λn,

0 ≤ λp ⊥ λn ≥ 0.

5. MPECs: nonsmooth modelling and optimality conditions A. Nurkanović 11/41
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Modeling the min(·, ·) function

Formulation 1: to model z = min(F1(w), F2(w)), use step LP with the argument
F1(w)− F2(w), i.e.:

min
y∈R

(F2(w)− F1(w))y

s.t. 0 ≤ y ≤ 1

and compute z = (1− y)F1(w) + yF2(w).
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Piecewise smooth functions and look-up tables
Introduced in [Raghunathan and Biegler, 2003]

Model a piecewise smooth functions F : R → R over intervals defined by grid points
a0 < a1 . . . < an

min
y∈Rn

n∑
i=1

(w − ai)(w − ai+1)yi

s.t.

n∑
i=1

yi = 1,

y ≥ 0.

-2 -1 0 1 2 3

w

-3

-2

-1

0

1

2

3

F
(w

)

a0 a1 a2 a3 a4

▶ Compute selectors variables yi, and z =
∑n

i=1 yifi(w).

▶ If w ∈ [ai−1, ai], then (w − ai)(w − ai+1) ≤ 0, otherwise positive.

▶ Generalization to multi dimensional input and output spaces via Stewart’s LP (Lecture 3),
very efficient if Voronoi regions can be used.
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Vanishing (inequality) constraints
Studied in detail in [Achtziger and Kanzow, 2008]

Vanishing constraint

If Hi(w) > 0 then Gi(w) ≤ 0, else if Hi(w) = 0 then Gi(w) ∈ R (Gi(w) ≤ 0 vanishes)

▶ Logical formulation:

H(w) ≥ 0,

Hi(w) > 0 =⇒ Gi(w) ≤ 0, i = 1, . . . ,m.

▶ Nonlinear programming formulation:

H(w) ≥ 0,

Gi(w)Hi(w) ≤ 0, i = 1, . . . ,m.

▶ Lifted complementarity formulation:

G(w)− z ≤ 0,

0 ≤ z ⊥ H(w) ≥ 0.

For Hi(w) > 0: z = 0, for Hi(w) = 0: z = max(Gi(w), 0).
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State triggered constraints (vanishing equality constraints)
Introduced in [Szmuk et al., 2020]

State triggered constraints

If Hi(w) < 0 then Gi(w) = 0, otherwise if Hi(w) ≥ 0 then Gi(w) ∈ R

▶ Logical formulation:

Hi(w) < 0 =⇒ Gi(w) = 0, i = 1, . . . ,m.

▶ Complementarity formulation:

z ⊥ G(w),

0 ≤ H(w) + z ⊥ z ≥ 0.

▶ Interpretation:
▶ Hi(w) < 0 =⇒ zi = −Hi(w) > 0 =⇒ Gi(w) = 0,
▶ Hi(w) > 0 =⇒ zi = 0 =⇒ Gi(w) ∈ R,
▶ Hi(w) = 0 =⇒ zi = 0 =⇒ Gi(w) ∈ R.

5. MPECs: nonsmooth modelling and optimality conditions A. Nurkanović 16/41
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Sparsity optimization problems
Studied in [Feng et al., 2018, Kanzow et al., 2024]

▶ ∥w∥0, the ℓ0 “norm” of w ∈ Rn, is the number of nonzero elements in this vector.

▶ In practice, relaxed via ℓ1.

▶ Complementarity constraints allow exact reformulations (same set of minimizers).

Sparsity optimization (SPO)

min
w∈Rn

f(w) + ρ∥w∥0

s.t. g(w) = 0,

h(w) ≥ 0.

e = [1, . . . , 1]⊤
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w,z∈Rn

f(w) + ρ(n− e⊤z)

s.t. g(w) = 0,

h(w) ≥ 0,

0 ≤ z ≤ e

w ⊥ z

Quadratic SPO [Kanzow et al., 2024]

min
w∈Rn

f(w) +
ρ

2

1∑
i

zi(zi − 2)

s.t. g(w) = 0,

h(w) ≥ 0,

w ⊥ z

e = [1, . . . , 1]⊤
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Sparsity optimization with full complementarity constraints
Derived in [Feng et al., 2018]

Sparsity optimization (SPO)

min
w∈Rn

f(w) + ρ∥w∥0

s.t. g(w) = 0,

h(w) ≥ 0.

Full complementarity SPO [Feng et al., 2018]

min
w,w±,z∈Rn

f(w) + ρ

n∑
i=1

(1− zi)

s.t. g(w) = 0,

w = w+ − w−,

0 ≤ z ⊥ w+ + w− ≥ 0,

0 ≤ w+ ⊥ w− ≥ 0,

z ≤ e.

▶ It can be deduced that at optimal solutions zi =

{
0, wi ̸= 0

1, wi = 0
▶ The same reformulations can be used to handle cardinality constraints ∥w∥0 ≤ κ, κ ∈ N,

but may have additional local minima [Kanzow et al., 2024].
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Calculus of logical operations
Logic with complementarity from [Pozharskiy et al., 2024], collection of logical relations [ApS, 2024, Chapter 9]

Logical operators for x, y ≥ 0

z > 0 (true), z = 0 (false)

z = x ∨ y ⇐⇒ z ≥ x, z ≥ y, z ≤ x+ y,

z = x ∧ y ⇐⇒ z ≤ x, z ≤ y, z ≥ x+ y −max(x, y),

x =⇒ z ⇐⇒ x ≤ z

max via convex optimization

max(x, y) =min
z∈R

z

s.t. z ≥ x, z ≥ y

▶ If z = 0 (false) then g(w) = 0:

−zM ≤ g(w) ≤ zM, M ≫ 1.

▶ If z = 0 (false) then h(w) ≤ 0:

h(w) ≤ zM, M ≫ 1.

▶ If z > 0 then w = 1:
w = step(z) (otherwise w ∈ [0, 1])
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Work flow in nonsmooth direct optimal control
First discretize, then optimize.

OptimizationTime discretizationProblem formulation

OCP
In
te
gr
at
or
Multiple shooting

Single shooting

Direct
transcription

nonsmooth
NLP

MPEC

SQP

IPM

!

!

Reg.
& Penalty

Active-set

OCP = Optimal Control Problem

NLP = Nonlinear Program

MPEC = Mathematical Program with Equilibrium Constraints

SQP = Sequential Quadratic Programming

IPM = Interior-Point Method

Reg. = Regularization
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Refresher on the Karush-Kuhn-Tucker (KKT) conditions

Nonlinear Program (NLP)

min
w∈Rn

f(w)

s.t. g(w) = 0,

h(w) ≥ 0.

L(w, λ, µ) = f(w)− λ⊤g(w)− µ⊤h(w)

Definition (LICQ)

A point w satisfies LICQ if

[∇g (w) , ∇hA (w)]

is full column rank.

Active set A = {i | hi(w) = 0}

Theorem (KKT conditions - FONC for constrained optimization)

Let f, g, h be C1. If w∗ is a (local) minimizer and satisfies LICQ, then there are unique vectors
λ∗ and µ∗ such that (w∗, λ∗, µ∗) satisfies:

∇wL (w∗, µ∗, λ∗ ) = 0, µ∗ ≥ 0, dual feasibility

g (w∗) = 0, h (w∗) ≥ 0 primal feasibility

µ∗
i hi(w

∗) = 0, ∀ i complementary slackness
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Refresher on the Karush-Kuhn-Tucker (KKT) conditions

Nonlinear Program (NLP)

min
w∈Rn

f(w)

s.t. g(w) = 0,

h(w) ≥ 0.

L(w, λ, µ) = f(w)− λ⊤g(w)− µ⊤h(w)

Definition (LICQ)

A point w satisfies LICQ if

[∇g (w) , ∇hA (w)]

is full column rank.

Active set A = {i | hi(w) = 0}

Theorem (KKT conditions - FONC for constrained optimization)

Let f, g, h be C1. If w∗ is a (local) minimizer and satisfies LICQ, then there are unique vectors
λ∗ and µ∗ such that (w∗, λ∗, µ∗) satisfies:

∇wL (w∗, µ∗, λ∗ ) = 0, µ∗ ≥ 0, dual feasibility

g (w∗) = 0, h (w∗) ≥ 0 primal feasibility

µ∗
i hi(w

∗) = 0, ∀ i complementary slackness

5. MPECs: nonsmooth modelling and optimality conditions A. Nurkanović 22/41
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Constraint qualifications: LICQ and MFCQ

Definition (LICQ)

A point w satisfies LICQ if

[∇g (w) , ∇hA (w)]

is full column rank.

Active set A = {i | hi(w) = 0}

Definition (MFCQ)

A point w satisfies the Mangasarian–Fromovitz
constraint qualification (MFCQ), if ∇g (w) has
full column rank, and if there exist a direction
d ∈ Rn such that:

∇g(w)⊤d = 0, ∇hi(w)
⊤d > 0.

▶ LICQ implies MFCQ. Direction can be
found by solving

∇g(w)⊤d = 0, ∇hi(w)
⊤d = e.

▶ Both require full rank of ∇g (w).

▶ Example MFCQ holds, LICQ does not:
w2 − w2

1 ≥ 0 and w2 − w4
1 ≥ 0 at w = 0.
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Applying KKT conditions to MPECs
Example from [Scheel and Scholtes, 2000].

Example linear MPCC

min
w∈R3

w1 + w2 − w3

s.t. h1(w) = 4w1 − w3 ≥ 0, | µ1,

h2(w) = 4w2 − w3 ≥ 0, | µ2,

w1 ≥ 0, | µG,

w2 ≥ 0, | µH ,

w1w2 ≤ 0, | µGH .

▶ Global optimum w∗ = (0, 0, 0).

▶ All constraints are active at the solution.

▶ Use necessary KKT conditions to compute the optimal Lagrange multipliers.

5. MPECs: nonsmooth modelling and optimality conditions A. Nurkanović 24/41
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Global optimum may not be a KKT point
Example from [Scheel and Scholtes, 2000].

KKT conditions applied to a MPCC

0 =
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From the non-negativity of the multipliers and this condition we obtain an inconsistent system:

µ∗
G = 1− 4µ∗

1, µ∗
G, µ

∗
1 ≥ 0 =⇒ µ∗

1 ∈ [0, 0.25],

µ∗
H = 1− 4µ∗

2, µ∗
H , µ∗

2 ≥ 0 =⇒ µ∗
2 ∈ [0, 0.25],

µ∗
1 + µ∗

2 = 1.

Global optimum not a KKT point.
Reason: constraint qualifications violated.
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Outline of MPEC optimality theory

▶ LICQ and MFCQ violated at all feasible points of an NLP formulation of an MPEC
w1 ≥ 0, w2 ≥ 0, w1w2 ≤ 0.

▶ KKT conditions need constraint qualifications to hold.

▶ We need better first-order necessary optimality conditions, that hold under weaker,
MPEC-tailored constraint qualifications.

▶ We show primal (no multipliers) and dual (with Lagrange multipliers) optimality
conditions for MPECs, and when they are equal.

▶ Having an understanding of optimality conditions is essential for designing efficient
numerical methods.

5. MPECs: nonsmooth modelling and optimality conditions A. Nurkanović 26/41
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Tangent cone definition

Nonlinear program (NLP)

min
w∈Rn

f(w) (3a)

s.t. g(w) = 0, (3b)

h(w) ≥ 0, (3c)

Ω = {w ∈ Rn | g(w) = 0, h(w) ≥ 0}
x

x1

x2

x3

xk

Ω

Definition (Bouligand tangent cone1)

The (Bouligand) tangent cone at w ∈ Ω is defined as the set:

TΩ(w) = {d ∈ Rn | ∃{wk} ⊂ Ω, {tk} ⊂ R≥0 : lim
k→∞

tk = 0, lim
k→∞

wk = w, lim
k→∞

wk − w

tk
= d}

1Georges Louis Bouligand (1889 – 1979), a French mathematician, introduced this tangent cone definition in
1932.
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First-order necessary conditions for optimality

Nonlinear program (NLP)

min
w∈Rn

f(w)

s.t. g(w) = 0,

h(w) ≥ 0,

Ω = {w ∈ Rn | g(w) = 0, h(w) ≥ 0}
w∗

TΩ(w∗)

Ω

d

∇f(w∗)

Theorem (First-Order Necessary Conditions)

If w∗ ∈ Ω is a local minimum of the NLP (3) then it holds that

∇f(w∗)⊤d ≥ 0 for all tangents d ∈ TΩ(w∗). (4)
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The definition of is B-stationarity

Definition (B-stationarity)

A point w∗ ∈ Ω satisfying (4) is called a Bouligand stationary (B-stationary) point.

Definition (Linearized feasible cone)

Let w ∈ Ω and A(w) = {i | hi(w) = 0}. The linearized feasible cone is defined as the set:

T lin
Ω (w) = {d ∈ Rn | ∇g(w)⊤d = 0,∇hi(w)

⊤d ≥ 0, i ∈ A(w)}

Standard nonlinear programming approach:

1. If a constraint qualification holds (e.g. LICQ), TΩ(w) = T lin
Ω (w) .

2. Use Farkas’ lemma, obtain from Theorem 6 the Karush–Kuhn–Tucker (KKT) conditions.

3. Solve a sequence of approximations of the KKT conditions to find a solution candidate
(e.g., with IPOPT [Wächter and Biegler, 2006]).
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Mathematical Programs with Equilibrium Constraints (MPEC)
Mathematical Programs with Complementarity Constraints (MPCC), but MPEC is easier to pronounce

MPEC

min
w∈Rn

f(w) (5a)

s.t. g(w) = 0, (5b)

h(w) ≥ 0, (5c)

0 ≤ w1 ⊥ w2 ≥ 0, (5d)

w = (w0, w1, w2) ∈ Rn, w0 ∈ Rp, w1, w2 ∈ Rm,

Ω = {x∈Rn | g(w)=0, h(w)≥0, 0≤w1 ⊥ w2≥0},

MPEC active sets:

I+0(w) = {i ∈ {1, . . . ,m} | w1,i > 0, w2,i = 0},
I0+(w) = {i ∈ {1, . . . ,m} | w1,i = 0, w2,i > 0},
I00(w) = {i ∈ {1, . . . ,m} | w1,i = 0, w2,i = 0}.

-1 0 1 2

w1

-1

-0.5

0

0.5

1

1.5

2

w
2

f(w)
+

w$

In most interesting cases:
TΩ(w) ̸= T lin

Ω (w).
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MPEC-tailored linearized feasible cone

Definition (MPEC-linearized feasible
cone [Flegel and Kanzow, 2005])

Let w ∈ Ω and d = (d0, d1, d2) ∈ Rp+2m. The
MPEC-linearized feasible cone is the set

T MPEC
Ω (w) = {d ∈ Rn | ∇g(w)⊤d = 0,

∇hi(w)
⊤d ≥ 0,∀i ∈ A(w),

d1,i = 0,∀i ∈ I0+(w),
d2,i = 0,∀i ∈ I+0(w),

0 ≤ d1,i ⊥ d2,i ≥ 0,∀i ∈ I00(w)}.

Lemma (Lemma 3.2 in
[Flegel and Kanzow, 2005])

Let w ∈ Ω, then for the MPEC (5) it holds
that:

TΩ(w) ⊆ T MPEC
Ω (w) ⊆ T lin

Ω (w).

-1 0 1 2

w1

-1

-0.5

0

0.5

1

1.5

2

w
2

T lin
+ (w$)

T+(w$) = T MPEC
+ (w$) = +

f(w)
+

w$
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Primal stationarity conditions for MPECs
First order necessary optimality conditions - revisited

Theorem (Theorem 6 extended, [Luo et al., 1996])

Let TΩ(w) = T MPEC
Ω (w), and w∗ ∈ Ω be a local minimizer of the MPEC (5), then it holds that

∇f(w∗)⊤d ≥ 0 for all d ∈ T MPEC
Ω (w∗), (6)

or equivalent to (6), d = 0 is a local minimizer of the following optimization problem:

min
d∈Rn

∇f(w∗)⊤d s.t. d ∈ T MPEC
Ω (w∗). (7)

▶ In interesting cases: TΩ(w) = T MPEC
Ω (w) ̸= T lin

Ω (w) .

▶ Use the linear program with complementarity constraints. (LPEC) (7) instead of the KKT
conditions.

▶ If I00(w) ̸= ∅, LPEC is nonconvex, problem combinatorial in nature.

▶ If I00(w) = ∅, LPEC reduces to LP, at d = 0 LP KKT conditions = NLP KKT conditions.
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Pieces of the MPEC: the Tight Nonlinear Program (TNLP)
Regular NLPs, used to define MPEC-specific concepts.

MPEC active sets

I+0(w) = {i ∈ {1, . . . ,m} | w1,i > 0, w2,i = 0},
I0+(w) = {i ∈ {1, . . . ,m} | w1,i = 0, w2,i > 0},
I00(w) = {i ∈ {1, . . . ,m} | w1,i = 0, w2,i = 0}.

Tight NLP (TNLP) at w∗

min
w∈Rn

f(w)

s.t. g(w) = 0,

h(w) ≥ 0,

w1,i = 0, w2,i ≥ 0, i ∈ I0+(w∗),

w1,i ≥ 0, w2,i = 0, i ∈ I+0(w
∗),

w1,i = 0, w2,i = 0, i ∈ I00(w∗).
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Pieces of the MPEC: the Relaxed Nonlinear Program (RNLP)
Regular NLPs, used to define MPEC-specific concepts.

MPEC active sets

I+0(w) = {i ∈ {1, . . . ,m} | w1,i > 0, w2,i = 0},
I0+(w) = {i ∈ {1, . . . ,m} | w1,i = 0, w2,i > 0},
I00(w) = {i ∈ {1, . . . ,m} | w1,i = 0, w2,i = 0}.

Relaxed NLP (RNLP) at w∗

min
w∈Rn

f(w)

s.t. g(w) = 0,

h(w) ≥ 0,

w1,i = 0, w2,i ≥ 0, i ∈ I0+(w∗),

w1,i ≥ 0, w2,i = 0, i ∈ I+0(w
∗),

w1,i ≥ 0, w2,i ≥ 0, i ∈ I00(w∗).
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Pieces of the MPEC: the Branch Nonlinear Program (BNLP)
Regular NLPs, used to define MPEC-specific concepts.

MPEC active sets

I+0(w) = {i ∈ {1, . . . ,m} | w1,i > 0, w2,i = 0},
I0+(w) = {i ∈ {1, . . . ,m} | w1,i = 0, w2,i > 0},
I00(w) = {i ∈ {1, . . . ,m} | w1,i = 0, w2,i = 0}.

Partitioning of the degenerate set I00(w)

D1(w) ∪ D2(w) = I00(w),
D1(w) ∩ D2(w) = ∅,
I1(w) := I0+(w) ∪ D1(w),
I2(w) := I+0(w) ∪ D2(w),

Branch NLP (BNLP) at w∗

min
w∈Rn

f(w)

s.t. g(w) = 0,

h(w) ≥ 0,

w1,i = 0, w2,i ≥ 0, i ∈ I1(w∗)

w1,i ≥ 0, w2,i = 0, i ∈ I2(w∗).
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Partitioning of the degenerate set I00(w)

D1(w) ∪ D2(w) = I00(w),
D1(w) ∩ D2(w) = ∅,
I1(w) := I0+(w) ∪ D1(w),
I2(w) := I+0(w) ∪ D2(w),

Branch NLP (BNLP) at w∗

min
w∈Rn

f(w)

s.t. g(w) = 0,

h(w) ≥ 0,

w1,i = 0, w2,i ≥ 0, i ∈ I1(w∗)

w1,i ≥ 0, w2,i = 0, i ∈ I2(w∗).

w1
w
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Relation between MPEC pieces

MPEC feasible set relations

ΩTNLP =
⋂

(I1,I2)

ΩBNLP(I1,I2) ⊂ Ω =
⋃

(I1,I2)

ΩBNLP(I1,I2).

w1

w
2

(a) TNLP

w1

w
2

(b) RNLP
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w
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(c) BNLP(fg;i)

w1

w
2

(d) BNLP(i;fg)
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On the solutions:
▶ If w∗ is a local minimizer of the RNLP, then it is a local minimizer of the MPEC. The

converse is not true.
▶ If w∗ is a local minimizer of the MPEC then it is a local minimizer of the TNLP.
▶ The point w∗ is a local minimizer of the MPEC if and only if it is a local minimizer of

every BNLP.
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Summary:
▶ The TNLP, RNLP, and BNLPs are regular nonlinear optimization problems.
▶ If we know the right TNLP/BNLP, we can just solve a regular NLP to solve the MPEC.
▶ There are 2|I00| BNLPs - highlighting the combinatorial nature.
▶ They are used to define MPEC specific definitions, e.g., we say MPEC-LICQ holds at w if

standard LICQ holds for the TNLP at w.
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Dual stationarity conditions for MPECs

Definition (Stationarity conditions for MPECs)

▶ Weak Stationarity (W-stationarity): A point w∗ ∈ Ω is called W-stationary if the
corresponding TNLP admits the satisfaction of the KKT conditions, i.e., there exist
Lagrange multipliers λ∗, µ∗, ν∗ and ξ∗ such that:

∇wf(w
∗)−∇wg(w

∗)λ∗ −∇wh(w
∗)µ∗ − (∇ww1)ν

∗ − (∇ww2)ξ
∗ = 0,

g(w∗) = 0,

0 ≤ µ∗ ⊥ h(w∗) ≥ 0,

w∗
1,i ≥ 0, ν∗i = 0, for all i ∈ I+0(w

∗),

w∗
2,i ≥ 0, ξ∗i = 0, for all i ∈ I0+(w∗),

w∗
1,i = 0, ν∗i ∈ R, for all i ∈ I0+(w∗) ∪ I00(w∗),

w∗
2,i = 0, ξ∗i ∈ R, for all i ∈ I+0(w

∗) ∪ I00(w∗).

▶ Strong Stationarity (S-stationarity): A point w∗ ∈ Ω is called S-stationary if it is weakly
stationary and ν∗i ≥ 0, ξ∗i ≥ 0 for all i ∈ I00(w∗).
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Relation between primal and dual stationarity for MPECs

8i

9 i

S-Stationarity

8i

9 i

W-Stationarity

8i

9 i

C-Stationarity

8i

9 i

M-Stationarity

8i

9 i

A-Stationarity

Theorem (Theorem 4 in [Scheel and Scholtes, 2000])

If w∗ is a S-stationary point of the MPEC (5), then it is also B-stationarity. If in addition the
MPEC-LICQ holds at w∗, then the reverse implication is also true.

▶ MPEC-LICQ cannot be relaxed to MPEC-MFCQ. Next weaker concept, M stationary
points can be B, but they do not have to.

▶ Our example from the begging satisfied MPEC-MFCQ and was M-stationary.
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M-stationarity allows first-order descent directions

Consider the two-dimensional MPEC:

min
w∈R2

(w1 − 1)2 + w2
2 + w3

2

s.t. 0 ≤ w1 ⊥ w2 ≥ 0.

▶ The origin w∗ = 0 is an M-stationary point with the
optimal multipliers ν = −2, ξ = 0.

▶ There exists a descent direction d = (1, 0) with
∇f(w∗)⊤d = −2 < 0.

▶ The origin is not B-stationary.
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The kink in the example from Lecture
4 corresponds to an M-stationary

point.
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C-stationarity allows first-order descent directions

Consider the two-dimensional MPEC:

min
w∈R2

(w1 − 1)2 + (w2 − 1)2

s.t. 0 ≤ w1 ⊥ w2 ≥ 0.

▶ The origin w∗ = 0 is an C-stationary point with the
optimal multipliers ν = −2, ξ = 2.

▶ There exists two descent direction d = (1, 0) and
d = (0, 1)

▶ The origin is not B-stationary, w = (1, 0) and
w = (0, 1) are S-stationary.
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Summary

▶ Complementarity constraints are a very powerful modeling tool.

▶ Formulations with disjoint feasible regions should be avoided.

▶ MPECs violate standard constraint qualifications at all feasible points.

▶ KKT conditions are not the right tool to identify solution candidates and build algorithm
upon.

▶ Tailored MPEC theory (and algorithms) exploit the piecewise structure.

▶ Only S-stationarity can verify B-stationarity, all others may allow descent directions = they
are spurious stationary concepts.
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Cited references VI
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State triggered constraints (vanishing equality constraints) - Flipped
Introduced in [Szmuk et al., 2020]

State triggered constraints

If Hi(w) > 0 then Gi(w) = 0, otherwise if Hi(w) ≤ 0 then Gi(w) ∈ R

▶ Logical formulation:

Hi(w) > 0 =⇒ Gi(w) = 0, i = 1, . . . ,m.

▶ Complementarity formulation:

z ⊥ G(w),

0 ≤ −H(w) + z ⊥ z ≥ 0.

▶ Interpretation:
▶ Hi(w) > 0 =⇒ zi = Hi(w) > 0 =⇒ Gi(w) = 0,
▶ Hi(w) < 0 =⇒ zi = 0 =⇒ Gi(w) ∈ R,
▶ Hi(w) = 0 =⇒ zi = 0 =⇒ Gi(w) ∈ R.
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State triggered inequality constraints
Introduced in [Szmuk et al., 2020]

State triggered inequality constraints

If Hi(w) > 0 then Gi(w) ≥ 0, otherwise if Hi(w) ≤ 0 then Gi(w) ∈ R

▶ Logical formulation:

Hi(w) > 0 =⇒ Gi(w) = 0, i = 1, . . . ,m.

▶ Complementarity formulation:

zG(w) ≥ 0,

0 ≤ −H(w) + z ⊥ z ≥ 0.

▶ Interpretation:
▶ Hi(w) > 0 =⇒ zi = Hi(w) > 0 =⇒ Gi(w) ≥ 0,
▶ Hi(w) < 0 =⇒ zi = 0 =⇒ Gi(w) ∈ R,
▶ Hi(w) = 0 =⇒ zi = 0 =⇒ Gi(w) ∈ R.
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	Introduction to MPECs
	Modeling piecewise smooth functions
	Modeling logical constraints
	Optimality conditions
	Appendix

