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Numerical methods for MPCCs

MPEC

min
w∈Rn

f(w) (1a)

s.t. g(w) = 0, (1b)

h(w) ≥ 0, (1c)

0 ≤ w1 ⊥ w2 ≥ 0, (1d)

w = (w0, w1, w2) ∈ Rn, w0 ∈ Rp, w1, w2 ∈ Rm,

Ω = {x∈Rn | g(w)=0, h(w)≥0, 0≤w1 ⊥ w2≥0}, -1 0 1 2
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▶ Standard NLP methods solve the KKT conditions.

▶ MPECs violate constraint qualifications, and the KKT conditions may not be necessary.

▶ There are many stationary concepts for MPECs, and not all are useful.

▶ Workaround/main idea: solve a (finite) sequence of more regular problems.
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Two families of MPCC methods

1. Regularization, smoothing, penalty methods: solve a sequence of regular nonlinear
programs parametrized by a parameter σk > 0.
▶ Pro: easy to implement.
▶ Con: ill-conditioning, weaker theoretical properties.

2. Combinatorial, active-set, pivoting methods: solve a sequence of piece MPCCs
(TNLP, BNLP), until a piece problem is found that solves also the MPCC.
▶ Pro: strong theoretical properties, can be combined with 1.
▶ Con: more difficult to implement, worst-case combinatorial complexity.
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programs parametrized by a parameter σk > 0.
▶ Pro: easy to implement.
▶ Con: ill-conditioning, weaker theoretical properties.

2. Combinatorial, active-set, pivoting methods: solve a sequence of piece MPCCs
(TNLP, BNLP), until a piece problem is found that solves also the MPCC.
▶ Pro: strong theoretical properties, can be combined with 1.
▶ Con: more difficult to implement, worst-case combinatorial complexity.

Both classes of methods are available in nosnoc’s mpccsol() function:

github.com/nosnoc/nosnoc

To get started see: github.com/nosnoc/nosnoc/tree/main/examples/generic_mpcc
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Scholtes’ global relaxation method
The easiest to implement and the most efficient regularization method [Scholtes, 2001].

Reg(σk)

min
w∈Rn

f(w)

s.t. g(w) = 0,

h(w) ≥ 0,

w1, w2 ≥ 0,

w1,iw2,i ≤ σk, i = 1, . . . ,m.
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w
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Theorem ( [Scholtes, 2001, Hoheisel et al., 2013])

Let {σk} ↓ 0 and let wk be a stationary point of Reg(σk) with wk → w∗ such that
MPEC-MFCQ holds at w∗. Then w∗ is a C-stationary point of the the MPEC (1).
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C-stationarity allows first-order descent directions

Consider the two-dimensional MPEC:

min
w∈R2

(w1 − 1)2 + (w2 − 1)2

s.t. 0 ≤ w1 ⊥ w2 ≥ 0.

▶ The origin w∗ = 0 is an C-stationary point with the
optimal multipliers ν = −2, ξ = 2.

▶ There exists two descent direction d = (1, 0) and
d = (0, 1)

▶ The origin is not B-stationary, w = (1, 0) and
w = (0, 1) are S-stationary.
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Smoothing method have drawbacks
No benefit in using them. Have elaborate convergence theory [Ralph and Wright, 2004].

Instead of relaxing w1, w2 ≥ 0 w1w2 ≤ σ, use smoothing w1, w2 ≥ 0, w1w2 = σ.

Consider the two-dimensional MPEC:

min
w∈R2

(w1 + 1)2 + (w2 + 1)2

s.t. 0 ≤ w1 ⊥ w2 ≥ 0.

▶ Relaxation method converges in one iteration to
w∗ = (0, 0).

▶ Smoothing needs an infinite sequence for
convergence.
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Other regularization methods
There exist many elaborate ways to relax the L-shaped set. Convergence theory in [Hoheisel et al., 2013]

(a) Scholtes
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(b) Lin-Fukushima (c) Ste,ensen-Ulbrich
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w
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w1

w
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(d) Kadrani et al.
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w
2

(e) Kanzow-Schwartz

▶ They have better convergence properties than Scholtes’ method if the NLP’s are solved
exactly.

▶ In practice, they perform better only on easier problems [Nurkanović et al., 2024].

:

a) [Scholtes, 2001]: C-stationarity under MPEC-MFCQ.

b) [Lin and Fukushima, 2005]: C-stationarity under MPEC-MFCQ..

c) [Steffensen and Ulbrich, 2010]: C-stationarity under MPEC-CPLD.

d) [Kadrani et al., 2009]: M-stationarity under MPEC-CPLD.

e) [Kanzow and Schwartz, 2013]: M-stationarity under MPEC-CPLD.
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“The price of inexactness” [Kanzow and Schwartz, 2015]

▶ Most convergence results derived under the assumption that every subproblem for a fixed
σk is solved exactly.

▶ If NLPs are solved to some ϵ > 0 threshold, than most methods have weaker convergence
properties.

▶ Steffensen-Ulbrich, Kadrani, Kanzow-Schwartz converge only to weakly stationary points!

▶ Scholtes’ method still converges to C-stationary points.

▶ A nice implementation for Scholtes’ method is in pair it with interior-point methods,
where the barrier τ and homotopy σ parameters are jointly driven to
zero [Raghunathan and Biegler, 2005] (IPOPT-C).
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Penalty methods
Closely related to regularization methods, sometimes with a one-to-one correspondence [Leyffer et al., 2006]

Main idea: put difficult part into objective.

The ℓ1 reformulation

min
w∈Rn

f(w) + ρw⊤
1 w2

s.t. g(w) = 0,

h(w) ≥ 0,

w1, w2 ≥ 0.

The ℓ∞ reformulation

min
w∈Rn,s∈R

f(w) + ρs

s.t. g(w) = 0,

h(w) ≥ 0,

w1, w2 ≥ 0,

w1,iw2,i ≤ s, i = 1 . . .m,

0 ≤ s ≤ s̄.

▶ If the penalty parameter ρ large enough, solve single NLP to solve
MPEC [Anitescu, 2005a, Anitescu, 2005b, Ralph and Wright, 2004].

▶ Good implementations update the penalty parameter in a homotopy ρk = 1
σk

▶ In practice, usually converges faster than Scholtes’ method, but has a lower success rate.
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Steering the homotopy parameter to zero
The practical performance depends on the update rate.

Approach: Solve a sequence of regularized NLPs (σk), warm start the next iteration with
w∗(σk−1). Update the homotopy parameter via:

▶ Linear update rule:

σk+1 = κσk, κ ∈ (0, 1)

▶ For faster convergence, superlinear rules may also be helpful:

σk+1 = min(κσk, (σk)η), κ ∈ (0, 1), η > 1

Some best practices:

▶ Start with not too large, and not too small σ0. For well-scaled problems σ0 = 1 usually
works well.

▶ Do not update too aggressively nor top conservatively. Good choices are κ = 0.1, κ = 0.2
and η = 1.5.

▶ Update rules are usually monotone. To increase robustness, if an iteration fails, go back
and update with κ+ = γκ, e.g., γ = 2.
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Motivation for active set methods for MPECs

Difficulties:

1. Regularization methods, also under very strong assumptions, converge to points that are
weaker than S-stationary, which are possibly not B-stationary.

2. Regularized NLPs, small or large σ, may be extremely difficult to solve (much more than
TNLPs/BNLPs).

Main idea of active-set methods:

1. Find a feasible point w ∈ Ω of the MPEC (1).

2. Solved the branch NLP with some partition of the index set, e.g. I1(w), I2(w)
3. Call an oracle to verify B-stationary or to give a better I1(w+) and I2(w+) (e.g. an

LPEC)

4. If not B-stationary, go to 2.
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A brief history of active-set methods

▶ Late 1990s, early 2000s: selecting the next TNLP/BNLP based on signs of
multipliers [Fukushima and Tseng, 2002, Giallombardo and Ralph, 2008,
Izmailov and Solodov, 2008, Jiang and Ralph, 1999, Lin and Fukushima, 2006,
Liu et al., 2006, Luo et al., 1996, Scholtes and Stöhr, 1999]. Convergence to
B-stationarity can only be guaranteed under MPEC-LICQ.

▶ 2007: In [Leyffer and Munson, 2007] for the first time suggested to use LPECs as a
stopping criteria and for step computation.

▶ 2022: SQP-type methods with LPECs, developed for MPECs with bound
constraints [Kirches et al., 2022] (B-stationary), extension for general constraints via
augmented Lagrangian [Guo and Deng, 2022] (M-stationary).

▶ 2024-2025: for general MPECs (B-stationary) in [Kazi et al., 2024] and [N. and Leyffer,
2025].
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Refresher on the the Branch Nonlinear Program (BNLP)

MPEC active sets

I+0(w) = {i ∈ {1, . . . ,m} | w1,i > 0, w2,i = 0},
I0+(w) = {i ∈ {1, . . . ,m} | w1,i = 0, w2,i > 0},
I00(w) = {i ∈ {1, . . . ,m} | w1,i = 0, w2,i = 0}.

Partitioning of the degenerate set I00(w

D1(w) ∪ D2(w) = I00(w),
D1(w) ∩ D2(w) = ∅,
I1(w) := I0+(w) ∪ D1(w),
I2(w) := I+0(w) ∪ D2(w),

Branch NLP (BNLP) at w∗

min
w∈Rn

f(w)

s.t. g(w) = 0,

h(w) ≥ 0,

w1,i = 0, w2,i ≥ 0, i ∈ I1(w∗)

w1,i ≥ 0, w2,i = 0, i ∈ I2(w∗).
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Refresher on LPECs
If there are no complementarity constraints, the LPEC reduces to an LP.

Theorem ([Luo et al., 1996])

Let TΩ(w) = T MPEC
Ω (w), and w∗ ∈ Ω be a local minimizer of the MPEC (1), then it holds that

∇f(w∗)⊤d ≥ 0 for all d ∈ T MPEC
Ω (w∗), (2)

or equivalently, d = 0 is a local minimizer of the following optimization problem:

min
d∈Rn

∇f(wk)⊤d

s.t. g(wk) +∇g(wk)⊤d = 0,

h(wk) +∇h(wk)⊤d ≥ 0,

wk
1,i + d1,i = 0,∀i ∈ Ik

0+,

wk
2,i + d2,i = 0,∀i ∈ Ik

+0,

0≤wk
1,i+d1,i ⊥ wk

2,i+d2,i≥0,∀i∈Ik
00
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Refresher on the relation between MPEC pieces

MPEC feasible set relations

ΩTNLP =
⋂

(I1,I2)

ΩBNLP(I1,I2) ⊂ Ω =
⋃

(I1,I2)

ΩBNLP(I1,I2).

w1

w
2

(a) TNLP

w1

w
2

(b) RNLP

w1

w
2

(c) BNLP(fg;i)

w1

w
2

(d) BNLP(i;fg)

Summary:

▶ The TNLP, RNLP, and BNLPs are regular nonlinear optimization problems.

▶ If we know the right TNLP/BNLP, we can just solve a regular NLP to solve the MPEC.

▶ There are 2|I00| BNLPs - highlighting the combinatorial nature.

6. Numerical methods for mathematical programs with complementarity constraintsA. Nurkanović 17/38
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MPECopt: An algorithm for computing a B-stationary points

Algorithm MPECopt (simplified)

Input: w0,ρ0 ∈ [ρlb, ρub], γL ∈ (0, 1), γU > 1

1 Call Phase I Algorithm to find a feasible point w0 ∈ Ω
for k = 0, . . . do // Major/outer loop

2 Possibly reset trust region radius ρk,0 ∈ [ρlb, ρub] for l = 0, . . . do // Minor/inner loop

3 Solve LPEC(wk, ρk,l) for dk,l if dk,l = 0 then
4 terminate // (B-stationary point found)

5 else if Active set changed then
6 Solve BNLP(wk + dk,l) for wk,l

if f(wk,l) < f(wk) then
7 wk+1 = wk,l; ρk,l+1 = γUρk,l; break // step accepted

8 else ρk,l+1 = γLρk,l // reduce TR-radius

9 else ρk,l+1 = γLρk,l // reduce TR-radius
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Algorithm for computing a B-stationary point of MPECs

LPEC(wk, ρ) - reduced

min
d∈Rn

∇f(wk)⊤d

s.t. g(wk) +∇g(wk)⊤d = 0,

h(wk) +∇h(wk)⊤d ≥ 0,

wk
1,i + d1,i = 0, wk

2,i + d2,i ≥ 0,∀i ∈ I0+,
wk

1,i + d1,i ≥ 0, wk
2,i + d2,i = 0,∀i ∈ I+0

0≤wk
1,i+d1,i ⊥ wk

2,i+d2,i≥0,∀i∈Ik
00,

∥d∥∞ ≤ ρ,

1. Solve LPEC(wk, ρ) to determine the active set for BNLP(wk + d) - or verify
B-stationarity. Don’t use d for iterate update.

2. Solve BNLP(wk + d) for accuracy: if decrease in objective accept step, else: resolve
LPEC with smaller ρ.
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Full vs reduced LPEC

LPEC(wk, ρ) - full

min
d∈Rn

∇f(wk)⊤d

s.t. g(wk) +∇g(wk)⊤d = 0,

h(wk) +∇h(wk)⊤d ≥ 0,

0≤wk
1,i+d1,i ⊥ wk

2,i+d2,i≥0,∀i,
∥d∥∞ ≤ ρ,

▶ If wk infeasible, then not clear how to
define index sets in reduced LPEC.

▶ If wk feasible, then d = 0 feasible.

▶ If wk not B-stationary, then
∇f(wk)⊤d < 0.

▶ Use wk + d for next active set guess.

▶ More complementarity constraints, more
computationally expensive? Depends on ρ.

Lemma

Let w ∈ Ω be a feasible point of the MPEC (1). For all trust region radii that satisfy

0 < ρ < ρ̄ = min{{w1,i | i ∈ Ik
+0} ∪ {w2,i | i ∈ Ik

0+}}, (3)

the sets of the local minimizers of the reduced and full LPECs are identical. In the special case
of I00 = {1, . . . ,m} the reduced and full LPEC coincide and in that case, ρ̄ = ∞.
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Example: nonconvexity of LPECs and better/worse minima

Assumption in example: LPEC solved to global optimality (turns out: not so restrictive in
practice).

Consider the two-dimensional MPEC:

min
w∈R2

4(w1 − 1)2 + (w2 − 1)2

s.t. 0 ≤ w1 ⊥ w2 ≥ 0.

▶ Two B-stationary points w̄ = (1, 0) and ŵ = (0, 1),
with f(w̄) = 1 and f(ŵ) = 4.

▶ If ρ is sufficiently small, ŵ with f(ŵ) = 4 is verified.

▶ If ρ large, the globally optimal LPEC solution finds
a BNLP with f(w̄) = 1.

▶ Conversely, start w̄, the full LPEC finds a BNLP
with a larger objective, step rejected, ρ reduced.

7x

x̂

-1 0 1 2 3

x1

-1

0

1

2

3

x
2

f(x)
!rf(7x)
d
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▶ If ρ large, the globally optimal LPEC solution finds
a BNLP with f(w̄) = 1.

▶ Conversely, start w̄, the full LPEC finds a BNLP
with a larger objective, step rejected, ρ reduced.

7x

x̂

-1 0 1 2 3

x1

-1

0

1

2

3

x
2

f(x)
!rf(7x)
d

6. Numerical methods for mathematical programs with complementarity constraintsA. Nurkanović 21/38



On solving LPECs

Solution methods for LPECs:

1. Regularization and penalty methods.
▶ Pro: easy to implement.
▶ Con: not guaranteed to verify d = 0 as B-stationary point of LPEC.

2. Tailored LPEC methods, extensions of the simplex method, branch and cut.
▶ Pro: guaranteed to verify d = 0 as B-stationary point of LPEC.
▶ Con: difficult to implement.

3. Mixed-integer reformulation: reformulate into equivalent mixed-integer linear program
(MILP).
▶ Pro: trivial to implement, find global minimum.
▶ Con: worst case exponential complexity.
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LPEC as MILP

LPEC(wk, ρ) as MILP

min
d∈Rn,

y∈{0,1}m

∇f(wk)⊤d (4a)

s.t. g(wk) +∇g(wk)⊤d = 0, (4b)

h(wk) +∇h(wk)⊤d ≥ 0, (4c)

0 ≤ wk
1+ d1 ≤ yM, (4d)

0 ≤ wk
2+ d2 ≤ (e− y)M, (4e)

∥d∥∞ ≤ ρ. (4f)

▶ Trust region ∥d∥ ≤ ρ makes feasible
set compact.

▶ bigM dominated by ρ, just needs to
be large enough for feasiblity
M = max((wk

1 , w
k
2 )) + ρ.

▶ At feasible points, ρ can be arbitarly
small - very tight relaxations.

▶ BNLP index sets:

I1(wk + d) = {i | yi = 0},
I2(wk + d) = {i | yi = 1}.

Lemma

Let w∗ ∈ Ω be a S-stationary point of the MPEC (1). For a sufficiently small ρ > 0, a global
minimizer of the relaxed MILP (4) is d = 0, and any y ∈ {0, 1}m such that (4d) and (4e) hold.
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Phase II - finding feasible points

Crossover strategy

1. Use regularization or penalty based method with σk.

2. If ∥diag(w1)w2∥∞ < ρ0, solve LPEC(w∗(σk), ρ0).

3. Solve BNLP(w∗(σk) + d), if successful, feasible point found.

4. If not, reduce σk and go to 1.

Theorem (Feasibility (informal), N. & Leyffer, 2025 )

Under suitable technical assumptions, if w(σk) is close enough to a feasible point of the
MPEC, then for a sufficently large ρ, every feasible point d of LPEC(w∗(σk), ρ0) predicts a
feasible BNLP.

Theorem (Convergence (informal), N. & Leyffer, 2025)

Under suitable technical assumptions, given a feasible point w0 ∈ Ω, the MPECopt algorithm
finds a B-stationary point in a finite number of iterations.
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Example: identifying a feasible BNLP
Combination of LPECs with regularization methods.

Consider the two-dimensional MPEC:

min
w∈R2

− 2w1 + w2

s.t. − w1 − (w2 − a)2 + 1 ≥ 0

0 ≤ w1 ⊥ w2 ≥ 0

▶ In the example, we set a = 1.1.

▶ If σ is not small enough, LPEC selects an infeasible
BNLP.

▶ For smaller τ LPEC predicts correct BNLP.

▶ In practice, often for large σ the LPEC finds a
feasible BNLP.

▶ Moreover, often the solution of this BNLP coincides
with the solution of the MPEC.
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Example: identifying a feasible BNLP
Combination of LPECs with regularization methods.

Consider the two-dimensional MPEC:

min
w∈R2

− 2w1 + w2

s.t. − w1 − (w2 − a)2 + 1 ≥ 0

0 ≤ w1 ⊥ w2 ≥ 0

▶ In the example, we set a = 1.1.

▶ If σ is not small enough, LPEC selects an infeasible
BNLP.

▶ For smaller τ LPEC predicts correct BNLP.

▶ In practice, often for large σ the LPEC finds a
feasible BNLP.

▶ Moreover, often the solution of this BNLP coincides
with the solution of the MPEC.

x$(=)

-1 0 1 2 3 4

x1

-1

0

1

2

3

4

x
2

f(x)
!rf(x$(=))
c(x) = 0
c(x$(=))+rc(x$(=))>d = 0
d

6. Numerical methods for mathematical programs with complementarity constraintsA. Nurkanović 25/38
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Outline of the lecture

1 Overview of MPCC methods

2 Regularization and penalty methods

3 Active-set methods

4 Numerical benchmarks

6. Numerical methods for mathematical programs with complementarity constraintsA. Nurkanović 26/38



Comparison of Phase I methods on macMPEC
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Figure: Evaluating different Phase I algorithms in MPECopt on the MacMPEC test set.
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Comparison of LPEC methods on macMPEC (1/3)
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Figure: Evaluating different LPEC algorithms in MPECopt on the MacMPEC test set.
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Comparison of LPEC methods on macMPEC (2/3)
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Figure: Maximal solution times for different LPEC algorithms in MPECopt on the MacMPEC test set.
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Comparison of LPEC methods on macMPEC (3/3)
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Figure: Comparison of total NLP and LPEC computation times on the MacMPEC.
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Active-set vs regularization methods on macMPEC
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Figure: Evaluating different MPEC solution methods on the MacMPEC test set in terms of finding a
stationary point.
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Number of NLP and LPEC solves
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Figure: Number of NLPs (top plot) and NLPs (bottom plots) solved in MacMPEC on all problem
instances.
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Number of NLP and LPEC solves
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Figure: Number of NLPs (top plot) and NLPs (bottom plots) solved in MacMPEC on all problem
instances.
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Distribution of stationary points
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Figure: Distribution of stationary points on MacMPEC for different solution methods. Failure counts the
number of infeasible problems.
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Distribution of stationary points
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Figure: Distribution of stationary points on MacMPEC for different solution methods. Failure counts the
number of infeasible problems.
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Distribution of stationary points
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Figure: Distribution of stationary points on MacMPEC for different solution methods. Failure counts the
number of infeasible problems.
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Distribution of stationary points
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Figure: Distribution of stationary points on MacMPEC for different solution methods. Failure counts the
number of infeasible problems.
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Active set vs regularization methods on random MPECs
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(b) Relative timings.

Figure: Evaluating different MPEC solution methods on the synthetic test set in terms of finding a
stationary point.
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Number of NLP and LPEC solves
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Figure: Number of NLPs (top plot) and NLPs (bottom plots) solved in the synthetic test set on all
problem instances.
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Number of NLP and LPEC solves
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Figure: Number of NLPs (top plot) and NLPs (bottom plots) solved in the synthetic test set on all
problem instances.
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Distribution of stationary points
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Figure: Distribution of stationary points on the synthetic test set for different solution methods. Failure
counts the number of infeasible problems.
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Summary

▶ MPEC methods solve (approximately) a sequence of more regular NLP.

▶ Regularization/penalty methods: easy to implement, but may converge to spurious
stationary points.

▶ In practice, they do not converge often to spurious stationary points.

▶ However, if MPEC-LICQ does not hold we can only know if we solve an LPEC.

▶ Active-set methods solve a sequence of branch NLPs. Converge always to B-stationary
points.

▶ LPECs of reasonable size can be efficiently solved as MILPs, because small ρ means not so
much branching.
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Thank you for your attention!

For more info on our work see summer school course material.
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