Sequential Integer Linear Programming with Accelerations by Shortest Path Computations for Integer Optimal Control on One-dimensional Domains

Sven Leyffer¹ Paul Manns² Marvin Severitt² July 14, 2021

¹Argonne National Laboratory

²TU Dortmund University

$$\underset{y,v \in L^{\infty}(\Omega)}{\text{minimize}} \quad \frac{1}{2} \|y + y_0\|_{L^2(D_0)}^2 \text{ subject to } \begin{cases} -\Delta y - k_0^2 (1 + qv)y = k_0^2 qvy_0 \text{ in } D, & \frac{\partial y}{\partial n} - ik_0 y = 0 \text{ in } \partial D, \\ v : D_s \to \{0, 1, 2\}. \end{cases}$$

$$\underset{y,v \in L^{\infty}(\Omega)}{\text{minimize}} \quad \frac{1}{2} \|y + y_0\|_{L^2(D_0)}^2 \text{ subject to } \begin{cases} -\Delta y - k_0^2 (1 + qv)y = k_0^2 qvy_0 \text{ in } D, & \frac{\partial y}{\partial n} - ik_0 y = 0 \text{ in } \partial D, \\ v : D_s \to \{0, 1, 2\}. \end{cases}$$

$$\underset{y,v \in L^{\infty}(\Omega)}{\text{minimize}} \quad \frac{1}{2} \|y + y_0\|_{L^2(D_0)}^2 \text{ subject to } \begin{cases} -\Delta y - k_0^2 (1 + qv)y = k_0^2 qvy_0 \text{ in } D, & \frac{\partial y}{\partial n} - ik_0 y = 0 \text{ in } \partial D, \\ v : D_s \to \{0, 1, 2\}. \end{cases}$$

$$\underset{y,v \in L^{\infty}(\Omega)}{\text{minimize}} \quad \frac{1}{2} \|y + y_0\|_{L^2(D_0)}^2 \text{ subject to } \begin{cases} -\Delta y - k_0^2 (1 + qv)y = k_0^2 qvy_0 \text{ in } D, & \frac{\partial y}{\partial n} - ik_0 y = 0 \text{ in } \partial D, \\ v : D_s \to \{0, 1, 2\}. \end{cases}$$

$$\underset{y,v \in L^{\infty}(\Omega)}{\text{minimize}} \quad \frac{1}{2} \|y + y_0\|_{L^2(D_0)}^2 \text{ subject to } \begin{cases} -\Delta y - k_0^2 (1 + qv)y = k_0^2 qvy_0 \text{ in } D, & \frac{\partial y}{\partial n} - ik_0 y = 0 \text{ in } \partial D, \\ v : D_s \to \{0, 1, 2\}. \end{cases}$$

$$\underset{y,v \in L^{\infty}(\Omega)}{\text{minimize } J(y) \text{ subject to }} \begin{cases} y = S(v), \\ v(x) \in \{\nu_1, \dots, \nu_M\} =: V \subset \mathbb{Z} \text{ for almost all } x \in \Omega. \end{cases}$$
(MIPDECO)

$$\underset{y,v \in L^{\infty}(\Omega)}{\text{minimize}} \ \frac{1}{2} \|y + y_0\|_{L^2(D_0)}^2 \text{ subject to } \begin{cases} -\Delta y - k_0^2 (1 + qv)y = k_0^2 qvy_0 \text{ in } D, & \frac{\partial y}{\partial n} - ik_0 y = 0 \text{ in } \partial D, \\ v : D_s \to \{0, 1, 2\}. \end{cases}$$

$$\underset{y,v \in L^{\infty}(\Omega)}{\text{minimize } J(y) \text{ subject to }} \begin{cases} y = S(v), \\ v(x) \in \{\nu_1, \dots, \nu_M\} =: V \subset \mathbb{Z} \text{ for almost all } x \in \Omega. \end{cases}$$
(MIPDECO)

$$\underset{y,v\in L^{\infty}(\Omega)}{\text{minimize}} \quad \frac{1}{2} \|y+y_0\|_{L^2(D_0)}^2 \text{ subject to } \begin{cases} -\Delta y - k_0^2 (1+qv)y = k_0^2 qvy_0 \text{ in } D, & \frac{\partial y}{\partial n} - ik_0 y = 0 \text{ in } \partial D, \\ v: D_s \to \{0, 1, 2\}. \end{cases}$$

$$\underset{y,v \in L^{\infty}(\Omega)}{\text{minimize } J(y) \text{ subject to }} \begin{cases} y = S(v), \\ v(x) \in \{\nu_1, \dots, \nu_M\} =: V \subset \mathbb{Z} \text{ for almost all } x \in \Omega. \end{cases}$$
(MIPDECO)

$$\underset{y,v \in L^{\infty}(\Omega)}{\text{minimize}} \quad \frac{1}{2} \|y + y_0\|_{L^2(D_0)}^2 \text{ subject to } \begin{cases} -\Delta y - k_0^2 (1 + qv)y = k_0^2 qvy_0 \text{ in } D, & \frac{\partial y}{\partial n} - ik_0 y = 0 \text{ in } \partial D, \\ v : D_s \to \{0, 1, 2\}. \end{cases}$$

$$\underset{y,v \in L^{\infty}(\Omega)}{\text{minimize } J(y) \text{ subject to }} \begin{cases} y = S(v), \\ v(x) \in \{\nu_1, \dots, \nu_M\} =: V \subset \mathbb{Z} \text{ for almost all } x \in \Omega. \end{cases}$$
(MIPDECO)

$$\underset{y,v \in L^{\infty}(\Omega)}{\text{minimize}} \quad \frac{1}{2} \|y + y_0\|_{L^2(D_0)}^2 \text{ subject to } \begin{cases} -\Delta y - k_0^2 (1 + qv)y = k_0^2 qvy_0 \text{ in } D, & \frac{\partial y}{\partial n} - ik_0 y = 0 \text{ in } \partial D, \\ v : D_s \to \{0, 1, 2\}. \end{cases}$$

$$\underset{y, v \in L^{\infty}(\Omega)}{\text{minimize } J(y) \text{ subject to }} \begin{cases} y = S(v), \\ v(x) \in \{\nu_1, \dots, \nu_M\} =: V \subset \mathbb{Z} \text{ for almost all } x \in \Omega. \end{cases}$$
(MIPDECO)

Solution Approaches

$$\underset{y,v \in L^{\infty}(\Omega)}{\text{minimize}} \quad \frac{1}{2} \|y + y_0\|_{L^2(D_0)}^2 \text{ subject to } \begin{cases} -\Delta y - k_0^2 (1 + qv)y = k_0^2 qvy_0 \text{ in } D, & \frac{\partial y}{\partial n} - ik_0 y = 0 \text{ in } \partial D, \\ v : D_s \to \{0, 1, 2\}. \end{cases}$$

$$\underset{y, v \in L^{\infty}(\Omega)}{\text{minimize } J(y) \text{ subject to }} \begin{cases} y = S(v), \\ v(x) \in \{\nu_1, \dots, \nu_M\} =: V \subset \mathbb{Z} \text{ for almost all } x \in \Omega. \end{cases}$$
(MIPDECO)

Solution Approaches

• First-discretize, then-optimize (using MINLP techniques) quickly becomes intractable, see e.g. (Lin, Leyffer, and Munson 2016).

$$\underset{y,v \in L^{\infty}(\Omega)}{\text{minimize}} \quad \frac{1}{2} \|y + y_0\|_{L^2(D_0)}^2 \text{ subject to } \begin{cases} -\Delta y - k_0^2 (1 + qv)y = k_0^2 qvy_0 \text{ in } D, & \frac{\partial y}{\partial n} - ik_0 y = 0 \text{ in } \partial D, \\ v : D_s \to \{0, 1, 2\}. \end{cases}$$

$$\underset{y, v \in L^{\infty}(\Omega)}{\text{minimize } J(y) \text{ subject to }} \begin{cases} y = S(v), \\ v(x) \in \{\nu_1, \dots, \nu_M\} =: V \subset \mathbb{Z} \text{ for almost all } x \in \Omega. \end{cases}$$
(MIPDECO)

Solution Approaches

- First-discretize, then-optimize (using MINLP techniques) quickly becomes intractable, see e.g. (Lin, Leyffer, and Munson 2016).
- Relaxation-based solution strategies: bang-bang principles (e.g. Tröltzsch 1979; Kunisch and Wachsmuth 2013), regularization-based methods (e.g. Stadler 2009; Clason and Kunisch 2014), combinatorial integral approximation (e.g. Sager, Bock, and Diehl 2012; Hante and Sager 2013; M. and Kirches 2020b).

RELAXATION-BASED APPROACHES (E.G. COMBINATORIAL INTEGRAL APPROXIMATION)

minimize
$$J(y)$$
 subject to $y = S(v)$ and
$$\begin{cases} v(x) \in \{\nu_1, \dots, \nu_M\} \text{ a.e.} (P) \\ v(x) \in \text{conv}\{\nu_1, \dots, \nu_M\} \text{ a.e.} (R) \end{cases}$$

minimize
$$J(y)$$
 subject to $y = S(v)$ and
$$\begin{cases} v(x) \in \{\nu_1, \dots, \nu_M\} \text{ a.e.} (P) \\ v(x) \in \text{conv}\{\nu_1, \dots, \nu_M\} \text{ a.e.} (R) \end{cases}$$

Observation (Sager, Bock, and Diehl 2012; Hante and Sager 2013; Kirches, M., and Ulbrich 2020) We can prove (and exploit algorithmically) for classes of ODEs, PDEs, and integral equations that

minimize
$$J(y)$$
 subject to $y = S(v)$ and
$$\begin{cases} v(x) \in \{\nu_1, \dots, \nu_M\} \text{ a.e.} (P) \\ v(x) \in \text{conv}\{\nu_1, \dots, \nu_M\} \text{ a.e.} (R) \end{cases}$$

Observation (Sager, Bock, and Diehl 2012; Hante and Sager 2013; Kirches, M., and Ulbrich 2020) We can prove (and exploit algorithmically) for classes of ODEs, PDEs, and integral equations that (a) (R) admits a minimizer, and

minimize
$$J(y)$$
 subject to $y = S(v)$ and
$$\begin{cases} v(x) \in \{\nu_1, \dots, \nu_M\} \text{ a.e.} (P) \\ v(x) \in \text{conv}\{\nu_1, \dots, \nu_M\} \text{ a.e.} (R) \end{cases}$$

Observation (Sager, Bock, and Diehl 2012; Hante and Sager 2013; Kirches, M., and Ulbrich 2020) We can prove (and exploit algorithmically) for classes of ODEs, PDEs, and integral equations that (a) (R) admits a minimizer, and (b) inf(P) = min(R).

minimize
$$J(y)$$
 subject to $y = S(v)$ and
$$\begin{cases} v(x) \in \{\nu_1, \dots, \nu_M\} \text{ a.e.} (P) \\ v(x) \in \text{conv}\{\nu_1, \dots, \nu_M\} \text{ a.e.} (R) \end{cases}$$

Observation (Sager, Bock, and Diehl 2012; Hante and Sager 2013; Kirches, M., and Ulbrich 2020) We can prove (and exploit algorithmically) for classes of ODEs, PDEs, and integral equations that (a) (R) admits a minimizer, and (b) inf (P) = min (R).

Main Limitations

minimize
$$J(y)$$
 subject to $y = S(v)$ and
$$\begin{cases} v(x) \in \{\nu_1, \dots, \nu_M\} \text{ a.e.} (P) \\ v(x) \in \text{conv}\{\nu_1, \dots, \nu_M\} \text{ a.e.} (R) \end{cases}$$

Observation (Sager, Bock, and Diehl 2012; Hante and Sager 2013; Kirches, M., and Ulbrich 2020) We can prove (and exploit algorithmically) for classes of ODEs, PDEs, and integral equations that (a) (R) admits a minimizer, and (b) inf (P) = min (R).

Main Limitations

• Strong assumptions on the PDE.

minimize
$$J(y)$$
 subject to $y = S(v)$ and
$$\begin{cases} v(x) \in \{\nu_1, \dots, \nu_M\} \text{ a.e.} (P) \\ v(x) \in \operatorname{conv}\{\nu_1, \dots, \nu_M\} \text{ a.e.} (R) \end{cases}$$

Observation (Sager, Bock, and Diehl 2012; Hante and Sager 2013; Kirches, M., and Ulbrich 2020)We can prove (and exploit algorithmically) for classes of ODEs, PDEs, and integral equations that(a) (R) admits a minimizer, and(b) inf (P) = min (R).

Main Limitations

- Strong assumptions on the PDE.
- Highly oscillating controls.

minimize
$$J(y)$$
 subject to $y = S(v)$ and
$$\begin{cases} v(x) \in \{\nu_1, \dots, \nu_M\} \text{ a.e.} (P) \\ v(x) \in \operatorname{conv}\{\nu_1, \dots, \nu_M\} \text{ a.e.} (R) \end{cases}$$

Observation (Sager, Bock, and Diehl 2012; Hante and Sager 2013; Kirches, M., and Ulbrich 2020)We can prove (and exploit algorithmically) for classes of ODEs, PDEs, and integral equations that(a) (R) admits a minimizer, and(b) inf (P) = min (R).

Main Limitations

- Strong assumptions on the PDE.
- Highly oscillating controls. (May be reduced by regularization that preserves (b) but generally unavoidable.)

Unregularized

Multibang Regularization (Clason and Kunisch 2014; M. 2021)

minimize
$$J(y)$$
 subject to $y = S(v)$ and
$$\begin{cases} v(x) \in \{\nu_1, \dots, \nu_M\} \text{ a.e.} (P) \\ v(x) \in \text{conv}\{\nu_1, \dots, \nu_M\} \text{ a.e.} (R) \end{cases}$$

Observation (Sager, Bock, and Diehl 2012; Hante and Sager 2013; Kirches, M., and Ulbrich 2020)We can prove (and exploit algorithmically) for classes of ODEs, PDEs, and integral equations that(a) (R) admits a minimizer, and(b) inf (P) = min (R).

Main Limitations

- Strong assumptions on the PDE.
- Highly oscillating controls. (May be reduced by regularization that preserves (b) but generally unavoidable.)

Unregularized

Multibang Regularization (Clason and Kunisch 2014; M. 2021)

The control regularity is just not enough to limit oscillations.

REGULARIZATION WITH TOTAL VARIATION

minimize
$$J(y) + TV(v)$$
 subject to $y = S(v)$ and $v(x) \in \{\nu_1, \dots, \nu_M\}$ a.e. (Q)

minimize
$$J(y) + TV(v)$$
 subject to $y = S(v)$ and $v(x) \in \{\nu_1, \dots, \nu_M\}$ a.e. (Q)

• Let $J \circ S : L^2(\Omega) \to \mathbb{R}$ be lower semicontinuous, and bounded below. Then (Q)—unlike (P)!—has a minimizer in the space $BV(\Omega)$ (e.g. (Ambrosio, Fusco, and Pallara 2000)).

minimize
$$J(y) + TV(v)$$
 subject to $y = S(v)$ and $v(x) \in \{\nu_1, \dots, \nu_M\}$ a.e. (Q)

- Let $J \circ S : L^2(\Omega) \to \mathbb{R}$ be lower semicontinuous, and bounded below. Then (Q)—unlike (P)!—has a minimizer in the space $BV(\Omega)$ (e.g. (Ambrosio, Fusco, and Pallara 2000)).
- For $\{\nu_1, \ldots, \nu_M\}$ -valued controls and $\Omega \subset \mathbb{R}$ (1D), $\mathsf{TV}(v)$ is the jump heights in 1D \implies rapid oscillations cannot occur.

minimize
$$J(y) + TV(v)$$
 subject to $y = S(v)$ and $v(x) \in \{\nu_1, \dots, \nu_M\}$ a.e. (Q)

- Let $J \circ S : L^2(\Omega) \to \mathbb{R}$ be lower semicontinuous, and bounded below. Then (Q)—unlike (P)!—has a minimizer in the space $BV(\Omega)$ (e.g. (Ambrosio, Fusco, and Pallara 2000)).
- For $\{\nu_1, \ldots, \nu_M\}$ -valued controls and $\Omega \subset \mathbb{R}$ (1D), $\mathsf{TV}(v)$ is the jump heights in 1D \implies rapid oscillations cannot occur.

Function space perspective: the set of feasible controls is weakly-* closed in the space $BV(\Omega)$.

minimize
$$J(y) + TV(v)$$
 subject to $y = S(v)$ and $v(x) \in \{\nu_1, \dots, \nu_M\}$ a.e. (Q)

- Let $J \circ S : L^2(\Omega) \to \mathbb{R}$ be lower semicontinuous, and bounded below. Then (Q)—unlike (P)!—has a minimizer in the space $BV(\Omega)$ (e.g. (Ambrosio, Fusco, and Pallara 2000)).
- For $\{\nu_1, \ldots, \nu_M\}$ -valued controls and $\Omega \subset \mathbb{R}$ (1D), $\mathsf{TV}(\nu)$ is the jump heights in 1D \implies rapid oscillations cannot occur. Function space perspective: the set of feasible controls is weakly-* closed in the space $BV(\Omega)$.
- runction space perspective, the set of reasible controls is weakly closed in the space $DV(\Omega 2)$.
- $\cdot L^1$ -balls around a feasible control contain further feasible controls (unlike in finite dimensions).

minimize
$$J(y) + TV(v)$$
 subject to $y = S(v)$ and $v(x) \in \{\nu_1, \dots, \nu_M\}$ a.e. (Q)

- Let $J \circ S : L^2(\Omega) \to \mathbb{R}$ be lower semicontinuous, and bounded below. Then (Q)—unlike (P)!—has a minimizer in the space $BV(\Omega)$ (e.g. (Ambrosio, Fusco, and Pallara 2000)).
- For $\{\nu_1, \ldots, \nu_M\}$ -valued controls and $\Omega \subset \mathbb{R}$ (1D), $\mathsf{TV}(v)$ is the jump heights in 1D \implies rapid oscillations cannot occur. Function space perspective: the set of feasible controls is weakly-* closed in the space $BV(\Omega)$.
- L¹-balls around a feasible control contain further feasible controls (unlike in finite dimensions).

Definition 1

Let r > 0. Then $v \in BV(\Omega)$ feasible for (Q) is r-optimal (locally optimal) for (Q) if

 $(J \circ S)(v) + \mathsf{TV}(v) \le (J \circ S)(\tilde{v}) + \mathsf{TV}(\tilde{v})$ for all $\tilde{v} \in BV(\Omega)$ with $||v - \tilde{v}||_{L^1} \le r$.

minimize
$$J(y) + TV(v)$$
 subject to $y = S(v)$ and $v(x) \in \{\nu_1, \dots, \nu_M\}$ a.e. (Q)

- Let $J \circ S : L^2(\Omega) \to \mathbb{R}$ be lower semicontinuous, and bounded below. Then (Q)—unlike (P)!—has a minimizer in the space $BV(\Omega)$ (e.g. (Ambrosio, Fusco, and Pallara 2000)).
- For $\{\nu_1, \ldots, \nu_M\}$ -valued controls and $\Omega \subset \mathbb{R}$ (1D), $\mathsf{TV}(v)$ is the jump heights in 1D \implies rapid oscillations cannot occur. Function space perspective: the set of feasible controls is weakly-* closed in the space $BV(\Omega)$.
- L¹-balls around a feasible control contain further feasible controls (unlike in finite dimensions).

Definition 1

Let r > 0. Then $v \in BV(\Omega)$ feasible for (Q) is r-optimal (locally optimal) for (Q) if

 $(J \circ S)(v) + \mathsf{TV}(v) \le (J \circ S)(\tilde{v}) + \mathsf{TV}(\tilde{v})$ for all $\tilde{v} \in BV(\Omega)$ with $||v - \tilde{v}||_{L^1} \le r$.

QUESTION: can we construct descent algorithms that converge to *r*-optimal points?

$$\begin{array}{l} \underset{v_{\text{next}}}{\text{minimize}} \quad (\nabla(J \circ S)(v), v_{\text{next}} - v)_{L^{2}(\Omega)} + \mathsf{TV}(v_{\text{next}}) - \mathsf{TV}(v) \\ \text{subject to} \quad \|v - v_{\text{next}}\|_{L^{1}(\Omega)} \leq \Delta \text{ and } v_{\text{next}}(x) \in \{\nu_{1}, \dots, \nu_{M}\} \text{ a.e.} \end{array}$$

$$(TR)$$

$$\begin{array}{l} \underset{v_{next}}{\text{minimize}} \quad (\nabla (J \circ S)(v), v_{next} - v)_{L^2(\Omega)} + \mathsf{TV}(v_{next}) - \mathsf{TV}(v) \\ \text{subject to} \quad \|v - v_{next}\|_{L^1(\Omega)} \leq \Delta \text{ and } v_{next}(x) \in \{\nu_1, \dots, \nu_M\} \text{ a.e.} \end{array}$$

$$(\mathsf{TR})$$

• (TR) has a minimizer (with objective value \leq 0).

$$\begin{array}{l} \underset{v_{\text{next}}}{\text{minimize}} \quad (\nabla (J \circ S)(v), v_{\text{next}} - v)_{L^{2}(\Omega)} + \mathsf{TV}(v_{\text{next}}) - \mathsf{TV}(v) \\ \text{subject to} \quad \|v - v_{\text{next}}\|_{L^{1}(\Omega)} \leq \Delta \text{ and } v_{\text{next}}(x) \in \{\nu_{1}, \dots, \nu_{M}\} \text{ a.e.} \end{array}$$

$$(TR)$$

- \cdot (TR) has a minimizer (with objective value \leq 0).
- L^1 trust region allows for nontrivial changes of the control (formally: v_{next} and v may have level sets that are not homeomorphic).

$$\begin{array}{l} \underset{v_{\text{next}}}{\text{minimize}} \quad (\nabla (J \circ S)(v), v_{\text{next}} - v)_{L^2(\Omega)} + \mathsf{TV}(v_{\text{next}}) - \mathsf{TV}(v) \\ \text{subject to} \quad \|v - v_{\text{next}}\|_{L^1(\Omega)} \le \Delta \text{ and } v_{\text{next}}(x) \in \{\nu_1, \dots, \nu_M\} \text{ a.e.} \end{array}$$

$$(TR)$$

- \cdot (TR) has a minimizer (with objective value \leq 0).
- L^1 trust region allows for nontrivial changes of the control (formally: v_{next} and v may have level sets that are not homeomorphic).
- The TV term enforces feasibility of weak-* cluster points and suppresses oscillations.

$$\begin{array}{l} \underset{v_{\text{next}}}{\text{minimize}} \quad (\nabla (J \circ S)(v), v_{\text{next}} - v)_{L^2(\Omega)} + \mathsf{TV}(v_{\text{next}}) - \mathsf{TV}(v) \\ \text{subject to} \quad \|v - v_{\text{next}}\|_{L^1(\Omega)} \le \Delta \text{ and } v_{\text{next}}(x) \in \{\nu_1, \dots, \nu_M\} \text{ a.e.} \end{array}$$

$$(TR)$$

- (TR) has a minimizer (with objective value \leq 0).
- L^1 trust region allows for nontrivial changes of the control (formally: v_{next} and v may have level sets that are not homeomorphic).
- The TV term enforces feasibility of weak-* cluster points and suppresses oscillations.
- + If $\Omega \subset \mathbb{R}$ is discretized into intervals, then we obtain an integer linear program.

$$\begin{array}{l} \underset{v_{next}}{\text{minimize}} \quad (\nabla (J \circ S)(v), v_{next} - v)_{L^2(\Omega)} + \mathsf{TV}(v_{next}) - \mathsf{TV}(v) \\ \text{subject to} \quad \|v - v_{next}\|_{L^1(\Omega)} \le \Delta \text{ and } v_{next}(x) \in \{\nu_1, \dots, \nu_M\} \text{ a.e.} \end{array}$$

$$(TR)$$

- (TR) has a minimizer (with objective value \leq 0).
- L^1 trust region allows for nontrivial changes of the control (formally: v_{next} and v may have level sets that are not homeomorphic).
- The TV term enforces feasibility of weak-* cluster points and suppresses oscillations.
- + If $\Omega \subset \mathbb{R}$ is discretized into intervals, then we obtain an integer linear program.
- Piecewise constant functions, defined on uniform discretizations, are dense (with respect to the right topologies!) in the set of feasible controls for (Q).

Algorithm 1 Reset trust-region method using (TR)

```
Input: \Delta^0 > 0, v^0 feasible, \sigma \in (0, 1).
 1: for n = 0, ... do
 2:
          k \leftarrow 0
 3.
        \Delta^{n,0} \leftarrow \Delta^0
 4:
        repeat
               \bar{v}^{n,k} \leftarrow \text{minimizer of (TR) with } v = v^{n-1}, \Delta = \Delta^{n,k}
 5:
                pred<sup>k</sup> \leftarrow (\nabla(J \circ S), v^{n-1} - \overline{v}^{n,k}), _2 + TV(v^{n-1}) - TV(\overline{v}^{n,k}).
 6:
               ared<sup>k</sup> \leftarrow (l \circ S)(v^{n-1}) + TV(v^{n-1}) - (l \circ S)(\overline{v}^{n,k}) - TV(\overline{v}^{n,k})
 7:
 8:
                if pred^k < 0 then
 9:
                    Terminate. The predicted reduction for v^{n-1} is zero.
                else if ared<sup>k</sup> < \sigma pred<sup>k</sup> then
10:
11:
                     k \leftarrow k+1
                     \Delta^{n,k} \leftarrow \Delta^{n,k-1}/2.
12:
13:
                else
14:
               v^n \leftarrow \overline{v}^{n,k}
15:
                    k \leftarrow k+1
16.
                end if
          until ared<sup>k-1</sup> > \sigma pred<sup>k-1</sup>
17:
18: end for
```


Algorithm 1 Reset trust-region method using (TR)

```
Input: \Delta^0 > 0, v^0 feasible, \sigma \in (0, 1).
 1: for n = 0, ... do
 2:
           k \leftarrow 0
           \Lambda^{n,0} \leftarrow \Lambda^0
 3.
 4:
           repeat
                 \bar{v}^{n,k} \leftarrow \text{minimizer of (TR) with } v = v^{n-1}, \Delta = \Delta^{n,k}
 5:
                 \mathsf{pred}^k \leftarrow (\nabla(J \circ S), \mathsf{v}^{n-1} - \bar{\mathsf{v}}^{n,k})_{12} + \mathsf{TV}(\mathsf{v}^{n-1}) - \mathsf{TV}(\bar{\mathsf{v}}^{n,k})_{12})
 6.
                 ared<sup>k</sup> \leftarrow (l \circ S)(v^{n-1}) + TV(v^{n-1}) - (l \circ S)(\overline{v}^{n,k}) - TV(\overline{v}^{n,k})
 7:
 8:
                 if pred^k < 0 then
 9:
                      Terminate. The predicted reduction for v^{n-1} is zero.
                  else if ared<sup>k</sup> < \sigma pred<sup>k</sup> then
10:
                       k \leftarrow k + 1
11:
                       \Delta^{n,k} \leftarrow \Delta^{n,k-1}/2.
12:
13:
                 else
14:
                       v^n \leftarrow \overline{v}^{n,k}
15:
                       k \leftarrow k + 1
16.
                  end if
            until ared<sup>k-1</sup> > \sigma pred<sup>k-1</sup>
17:
18: end for
```


Algorithm 1 Reset trust-region method using (TR)

```
Input: \Delta^0 > 0, v^0 feasible, \sigma \in (0, 1).
 1: for n = 0, ... do
 2:
           k \leftarrow 0
           \Lambda^{n,0} \leftarrow \Lambda^0
 3.
 4:
           repeat
                \overline{v}^{n,k} \leftarrow \text{minimizer of (TR) with } v = v^{n-1}, \Delta = \Delta^{n,k}
 5:
                pred<sup>k</sup> \leftarrow (\nabla(J \circ S), v^{n-1} - \overline{v}^{n,k}), _2 + TV(v^{n-1}) - TV(\overline{v}^{n,k}).
 6.
                ared<sup>k</sup> \leftarrow (l \circ S)(v^{n-1}) + TV(v^{n-1}) - (l \circ S)(\overline{v}^{n,k}) - TV(\overline{v}^{n,k})
 7:
 8:
                if pred^k < 0 then
 9:
                      Terminate. The predicted reduction for v^{n-1} is zero.
10:
                 else if ared<sup>k</sup> < \sigma pred<sup>k</sup> then
11:
                      k \leftarrow k + 1
                      \Delta^{n,k} \leftarrow \Delta^{n,k-1}/2
12:
                else
                      v^n \leftarrow \overline{v}^{n,k}
14:
15:
                      k \leftarrow k + 1
16.
                 end if
           until ared<sup>k-1</sup> > \sigma pred<sup>k-1</sup>
17:
18: end for
```


Observation

If $\liminf_{h \downarrow 0} \frac{1}{h} \int_{t_i}^{t_i+h} \nabla (J \circ S)(v) > 0$, then shifting t_i slightly to the right improves the objective of (TR) without changing the **TV** term.

Algorithm 1 Reset trust-region method using (TR)

```
Input: \Delta^0 > 0, v^0 feasible, \sigma \in (0, 1).
 1: for n = 0, ... do
 2:
           k \leftarrow 0
          \Lambda^{n,0} \leftarrow \Lambda^0
 3.
 4:
           repeat
                \overline{v}^{n,k} \leftarrow \text{minimizer of (TR) with } v = v^{n-1}, \Delta = \Delta^{n,k}
 5:
                pred<sup>k</sup> \leftarrow (\nabla(J \circ S), v^{n-1} - \overline{v}^{n,k}), _2 + TV(v^{n-1}) - TV(\overline{v}^{n,k}).
 6.
                ared<sup>k</sup> \leftarrow (l \circ S)(v^{n-1}) + TV(v^{n-1}) - (l \circ S)(\overline{v}^{n,k}) - TV(\overline{v}^{n,k})
 7:
 8:
                if pred^k < 0 then
 9:
                      Terminate. The predicted reduction for v^{n-1} is zero.
10:
                 else if ared<sup>k</sup> < \sigma pred<sup>k</sup> then
11:
                      k \leftarrow k + 1
                      \Delta^{n,k} \leftarrow \Delta^{n,k-1}/2.
12:
                else
                      v^n \leftarrow \overline{v}^{n,k}
14:
15:
                      k \leftarrow k + 1
16.
                 end if
           until ared<sup>k-1</sup> > \sigma pred<sup>k-1</sup>
17:
18: end for
```


Observation

If $\liminf_{h \downarrow 0} \frac{1}{h} \int_{t_i}^{t_i+h} \nabla(J \circ S)(v) > 0$, then shifting t_i slightly to the right improves the objective of (TR) without changing the TV term.

Proposition 2

Under a regularity assumption on $\nabla^2(J \circ S)$, this yields a stationarity condition for (Q) and (TR).

Algorithm 1 Reset trust-region method using (TR)

```
Input: \Delta^0 > 0, v^0 feasible, \sigma \in (0, 1).
 1: for n = 0, ... do
 2:
           k \leftarrow 0
          \Lambda^{n,0} \leftarrow \Lambda^0
 3.
 4:
           repeat
                \overline{v}^{n,k} \leftarrow \text{minimizer of (TR) with } v = v^{n-1}, \Delta = \Delta^{n,k}
 5:
                pred<sup>k</sup> \leftarrow (\nabla(J \circ S), v^{n-1} - \overline{v}^{n,k}), _2 + TV(v^{n-1}) - TV(\overline{v}^{n,k}).
 6.
                ared<sup>k</sup> \leftarrow (l \circ S)(v^{n-1}) + TV(v^{n-1}) - (l \circ S)(\overline{v}^{n,k}) - TV(\overline{v}^{n,k})
 7:
 8:
                if pred^k < 0 then
 9:
                      Terminate. The predicted reduction for v^{n-1} is zero.
10:
                 else if ared<sup>k</sup> < \sigma pred<sup>k</sup> then
11:
                      k \leftarrow k + 1
                      \Delta^{n,k} \leftarrow \Delta^{n,k-1}/2.
12:
                else
                      v^n \leftarrow \overline{v}^{n,k}
14:
15:
                      k \leftarrow k + 1
16.
                 end if
           until ared<sup>k-1</sup> > \sigma pred<sup>k-1</sup>
17:
18: end for
```


Observation

If $\liminf_{h \downarrow 0} \frac{1}{h} \int_{t_i}^{t_i+h} \nabla(J \circ S)(v) > 0$, then shifting t_i slightly to the right improves the objective of (TR) without changing the TV term.

Proposition 2

Under a regularity assumption on $\nabla^2(J \circ S)$, this yields a stationarity condition for (Q) and (TR).

Unless stationarity holds, the inner loop terminates finitely.

Algorithm 1 Reset trust-region method using (TR)

```
Input: \Delta^0 > 0, v^0 feasible, \sigma \in (0, 1).
 1: for n = 0, ... do
 2:
           k \leftarrow 0
          \Lambda^{n,0} \leftarrow \Lambda^0
 3.
 4:
           repeat
                \overline{v}^{n,k} \leftarrow \text{minimizer of (TR) with } v = v^{n-1}, \Delta = \Delta^{n,k}
 5:
                pred<sup>k</sup> \leftarrow (\nabla(J \circ S), v^{n-1} - \overline{v}^{n,k}), _2 + TV(v^{n-1}) - TV(\overline{v}^{n,k}).
 6.
                ared<sup>k</sup> \leftarrow (l \circ S)(v^{n-1}) + TV(v^{n-1}) - (l \circ S)(\overline{v}^{n,k}) - TV(\overline{v}^{n,k})
 7:
 8:
                if pred^k < 0 then
 9:
                      Terminate. The predicted reduction for v^{n-1} is zero.
10:
                 else if ared<sup>k</sup> < \sigma pred<sup>k</sup> then
11:
                      k \leftarrow k + 1
                      \Delta^{n,k} \leftarrow \Delta^{n,k-1}/2
12:
13:
                else
14:
                      v^n \leftarrow \overline{v}^{n,k}
15:
                      k \leftarrow k + 1
16.
                 end if
           until ared<sup>k-1</sup> > \sigma pred<sup>k-1</sup>
17:
18: end for
```


Observation

If $\liminf_{h \downarrow 0} \frac{1}{h} \int_{t_i}^{t_i+h} \nabla(J \circ S)(v) > 0$, then shifting t_i slightly to the right improves the objective of (TR) without changing the TV term.

Proposition 2

Under a regularity assumption on $\nabla^2(J \circ S)$, this yields a stationarity condition for (Q) and (TR).

Unless stationarity holds, the inner loop terminates finitely. If $\nabla(J \circ S)(v) \in C(\overline{\Omega})$, stationarity is $\nabla(J \circ S)(v)(t_i) = 0$.

Theorem 3 (Leyffer and M. 2021 under review)

The $(v^n)_n$ produced by Alg. 1 are feasible for (Q) with monotonously decreasing objective values.

Theorem 3 (Leyffer and M. 2021 under review)

The $(v^n)_n$ produced by Alg. 1 are feasible for (Q) with monotonously decreasing objective values.

SEQUENTIAL LINEAR INTEGER PROGRAMMING METHOD IN FUNCTION SPACE – ASYMPTOTICS IN 1D

Theorem 3 (Leyffer and M. 2021 under review)

The $(v^n)_n$ produced by Alg. 1 are feasible for (Q) with monotonously decreasing objective values.

Under a regularity condition on $\nabla^2(J \circ S)$ one of the following mutually exclusive outcomes holds:

1. $(v^n)_n$ is finite. Its final element is stationary and solves (TR) with objective value zero.

SEQUENTIAL LINEAR INTEGER PROGRAMMING METHOD IN FUNCTION SPACE – ASYMPTOTICS IN 1D

Theorem 3 (Leyffer and M. 2021 under review)

The $(v^n)_n$ produced by Alg. 1 are feasible for (Q) with monotonously decreasing objective values.

- 1. $(v^n)_n$ is finite. Its final element is stationary and solves (TR) with objective value zero.
- 2. $(v^n)_n$ is finite. Its final element is stationary and the inner loop does not terminate.

SEQUENTIAL LINEAR INTEGER PROGRAMMING METHOD IN FUNCTION SPACE – ASYMPTOTICS IN 1D

Theorem 3 (Leyffer and M. 2021 under review)

The $(v^n)_n$ produced by Alg. 1 are feasible for (Q) with monotonously decreasing objective values.

- 1. $(v^n)_n$ is finite. Its final element is stationary and solves (TR) with objective value zero.
- 2. $(v^n)_n$ is finite. Its final element is stationary and the inner loop does not terminate.
- 3. $(v^n)_n$ has a weak-* cluster point in BV(Ω). All cluster points are feasible, strict, and stationary.

Theorem 3 (Leyffer and M. 2021 under review)

The $(v^n)_n$ produced by Alg. 1 are feasible for (Q) with monotonously decreasing objective values.

- 1. $(v^n)_n$ is finite. Its final element is stationary and solves (TR) with objective value zero.
- 2. $(v^n)_n$ is finite. Its final element is stationary and the inner loop does not terminate.
- 3. $(v^n)_n$ has a weak-* cluster point in BV(Ω). All cluster points are feasible, strict, and stationary.

Results for an LLSQ problem for different (nonadaptive) control discretizations (N) vs MIQP and CIA

	SLIP (with SCIP)		MIQP (with SCIP)		CIA (w./ scipy.optimize, L-BFGS-B, SCARP)	
N	objective	time	objective	time to best objective	objective	time
32	$9.081 \cdot 10^{-3}$	3.543 · 10 ^{−1} s	$5.079 \cdot 10^{-3}$	3.837 · 10 ³ s	$1.839 \cdot 10^{-2}$	1.775 · 10 ¹ s
64	$9.169 \cdot 10^{-3}$	1.015 s	$4.733 \cdot 10^{-3}$	4.064 · 10 ³ s*	$6.369 \cdot 10^{-3}$	1.775 · 10 ¹ s
128	$7.080 \cdot 10^{-3}$	3.185 s	5.447 · 10 ⁻³	1.434 · 10 ⁴ s*	$5.551 \cdot 10^{-3}$	1.778 · 10 ¹ s
256	$5.523 \cdot 10^{-3}$	2.350 · 10 ¹ s	5.513 · 10 ⁻³	1.644 · 10 ⁴ s*	$7.741 \cdot 10^{-3}$	1.777 · 10 ¹ s
512	$4.426 \cdot 10^{-3}$	1.687 · 10 ² s	$6.685 \cdot 10^{-3}$	1.776 · 10 ⁴ s*	$1.220 \cdot 10^{-2}$	1.778 · 10 ¹ s
1024	$4.529 \cdot 10^{-3}$	3.303 · 10 ² s	$9.153 \cdot 10^{-3}$	1.680 · 10 ⁴ s*	$2.350 \cdot 10^{-2}$	1.784 · 10 ¹ s
2048	4.339 · 10 ⁻³	1.698 · 10 ⁴ s	$2.727 \cdot 10^{-2}$	1.746 · 10 ⁴ s*	$4.610 \cdot 10^{-2}$	1.800 · 10 ¹ s

* Timeout after 1.8 · 10⁴ s

SEQUENTIAL LINEAR INTEGER PROGRAMMING METHOD – QUALITATIVE RESULTS

Figure 1: Objective values over running time for SLIP (solid) and MIQP (dashed) for N = 32, ..., 2048.

SEQUENTIAL LINEAR INTEGER PROGRAMMING METHOD – QUALITATIVE RESULTS

Figure 2: Top row: final control trajectories produced by the SLIP method for N = 32 (left, objective value $9.081 \cdot 10^{-3}$) and N = 2048 (right, objective value $4.339 \cdot 10^{-3}$). Bottom row: control trajectories produced by the combinatorial integral approximation decomposition approach using CIA / SCARP for N = 32 (left, objective value $1.839 \cdot 10^{-2}$) and N = 2048 (right, objective value $4.610 \cdot 10^{-2}$).

1. Sufficient regularity condition: $\nabla^2 (J \circ S)[v, w] \leq C \|v\|_{L^1} \|w\|_{L^1}$. Why? Need to bound remainder term in Taylor's theorem (because we have $\|v\|_{L^2}^2 \leq C \|v\|_{L^1}$ and Cauchy decrease only in L^1).

- 1. Sufficient regularity condition: $\nabla^2 (J \circ S)[v, w] \leq C ||v||_{L^1} ||w||_{L^1}$. Why? Need to bound remainder term in Taylor's theorem (because we have $||v||_{L^2}^2 \leq C ||v||_{L^1}$ and Cauchy decrease only in L^1).
- 2. The proof is bound to the case $\Omega = (0, T)$ so far because it utilizes $TV(v) TV(w) \in \mathbb{Z}$, which is not true in higher dimensions. A stationarity condition may probably still be derived but convergence to stationary points may be more difficult to obtain.

- 1. Sufficient regularity condition: $\nabla^2 (J \circ S)[v, w] \leq C ||v||_{L^1} ||w||_{L^1}$. Why? Need to bound remainder term in Taylor's theorem (because we have $||v||_{L^2}^2 \leq C ||v||_{L^1}$ and Cauchy decrease only in L^1).
- 2. The proof is bound to the case $\Omega = (0, T)$ so far because it utilizes $TV(v) TV(w) \in \mathbb{Z}$, which is not true in higher dimensions. A stationarity condition may probably still be derived but convergence to stationary points may be more difficult to obtain.
- 3. Reset of the trust region is used in the proof to avoid contraction at nonstationary points.

- 1. Sufficient regularity condition: $\nabla^2 (J \circ S)[v, w] \leq C ||v||_{L^1} ||w||_{L^1}$. Why? Need to bound remainder term in Taylor's theorem (because we have $||v||_{L^2}^2 \leq C ||v||_{L^1}$ and Cauchy decrease only in L^1).
- 2. The proof is bound to the case $\Omega = (0, T)$ so far because it utilizes $TV(v) TV(w) \in \mathbb{Z}$, which is not true in higher dimensions. A stationarity condition may probably still be derived but convergence to stationary points may be more difficult to obtain.
- 3. Reset of the trust region is used in the proof to avoid contraction at nonstationary points.
- 4. Numerical analysis for discretized algorithm exists only partially so far.

- 1. Sufficient regularity condition: $\nabla^2 (J \circ S)[v, w] \leq C ||v||_{L^1} ||w||_{L^1}$. Why? Need to bound remainder term in Taylor's theorem (because we have $||v||_{L^2}^2 \leq C ||v||_{L^1}$ and Cauchy decrease only in L^1).
- 2. The proof is bound to the case $\Omega = (0, T)$ so far because it utilizes $TV(v) TV(w) \in \mathbb{Z}$, which is not true in higher dimensions. A stationarity condition may probably still be derived but convergence to stationary points may be more difficult to obtain.
- 3. Reset of the trust region is used in the proof to avoid contraction at nonstationary points.
- 4. Numerical analysis for discretized algorithm exists only partially so far.
- 5. Scaling of TV-term wrt. J needs to be chosen sensibly.

- Sufficient regularity condition: ∇²(J ∘ S)[v, w] ≤ C||v||_{L¹} ||w||_{L¹}. Why? Need to bound remainder term in Taylor's theorem (because we have ||v||²_{L²} ≤ C||v||_{L¹} and Cauchy decrease only in L¹).
- 2. The proof is bound to the case $\Omega = (0, T)$ so far because it utilizes $TV(v) TV(w) \in \mathbb{Z}$, which is not true in higher dimensions. A stationarity condition may probably still be derived but convergence to stationary points may be more difficult to obtain.
- 3. Reset of the trust region is used in the proof to avoid contraction at nonstationary points.
- 4. Numerical analysis for discretized algorithm exists only partially so far.
- 5. Scaling of **TV**-term wrt. *J* needs to be chosen sensibly.

Key observation from the proof

The sequence of heights of the step function along (0, *T*) in 1D settles after finitely many iterations and only the exact positions vary, which resembles settling of the active set in NLP solvers.

- Sufficient regularity condition: ∇²(J ∘ S)[v, w] ≤ C||v||_{L¹} ||w||_{L¹}. Why? Need to bound remainder term in Taylor's theorem (because we have ||v||²_{L²} ≤ C||v||_{L¹} and Cauchy decrease only in L¹).
- 2. The proof is bound to the case $\Omega = (0, T)$ so far because it utilizes $TV(v) TV(w) \in \mathbb{Z}$, which is not true in higher dimensions. A stationarity condition may probably still be derived but convergence to stationary points may be more difficult to obtain.
- 3. Reset of the trust region is used in the proof to avoid contraction at nonstationary points.
- 4. Numerical analysis for discretized algorithm exists only partially so far.
- 5. Scaling of **TV**-term wrt. *J* needs to be chosen sensibly.

Key observation from the proof

The sequence of heights of the step function along (0, *T*) in 1D settles after finitely many iterations and only the exact positions vary, which resembles settling of the active set in NLP solvers.

\implies Detect this and run second-order methods on switching point optimization NLPs for fast convergence (e.g. (Maurer and Osmolovskii 2004)).

How to solve the trust-region problem (efficiently)?

$$\mathsf{TR}(\mathsf{v}, \Delta) = \begin{cases} \min_{d, \delta, \xi, \Xi} c^{\mathsf{T}} d + \alpha \Xi \\ \text{s.t. } v_i + d_i \in \mathsf{V} \text{ for all } i \in \{1, \dots, N\} \\ -\delta_i \leq d_i h_i \leq \delta_i \text{ for all } i \in \{1, \dots, N\} \\ \sum_{i=1}^N \delta_i \leq \Delta \\ -\xi_i \leq v_{i+1} + d_{i+1} - v_i - d_i \leq \xi_i \text{ for all } i \in \{1, \dots, N-1\} \\ \sum_{i=1}^{N-1} \xi_i \leq \Xi \end{cases}$$

$$\mathsf{TR}(\mathbf{v}, \Delta) = \begin{cases} \min_{d, \delta, \xi, \Xi} c^T d + \alpha \Xi & c_i = \int_{t_i}^{t_{i+1}} \nabla (i \circ S)(\mathbf{v})(s) \, \mathrm{d}s \\ \text{s.t. } \mathbf{v}_i + d_i \in V \text{ for all } i \in \{1, \dots, N\} \\ -\delta_i \leq d_i h_i \leq \delta_i \text{ for all } i \in \{1, \dots, N\} \\ \sum_{i=1}^N \delta_i \leq \Delta \\ -\xi_i \leq \mathbf{v}_{i+1} + d_{i+1} - \mathbf{v}_i - d_i \leq \xi_i \text{ for all } i \in \{1, \dots, N-1\} \\ \sum_{i=1}^{N-1} \xi_i \leq \Xi \end{cases}$$

$$\mathsf{TR}(\mathbf{v}, \Delta) = \begin{cases} \min_{d, \delta, \xi, \Xi} c^{\mathsf{T}} d + \alpha \Xi & c_i = \int_{t_i}^{t_{i+1}} \nabla (l \circ S)(\mathbf{v})(s) \, \mathrm{ds} \\ \text{s.t. } \mathbf{v}_i + d_i \in \mathsf{V} \text{ for all } i \in \{1, \dots, N\} & \mathsf{v}_{\mathsf{next}} = \mathsf{v} + d \text{ is integer} \\ -\delta_i \leq d_i h_i \leq \delta_i \text{ for all } i \in \{1, \dots, N\} & \\ \sum_{i=1}^N \delta_i \leq \Delta & \\ -\xi_i \leq \mathsf{v}_{i+1} + d_{i+1} - \mathsf{v}_i - d_i \leq \xi_i \text{ for all } i \in \{1, \dots, N-1\} \\ \sum_{i=1}^{N-1} \xi_i \leq \Xi & \end{cases}$$

$$\mathsf{TR}(\mathbf{v}, \Delta) = \begin{cases} \min_{d, \delta, \xi, \Xi} c^T d + \alpha \Xi & c_i = \int_{t_i}^{t_{i+1}} \nabla (l \circ S)(\mathbf{v})(s) ds \\ \text{s.t. } v_i + d_i \in V \text{ for all } i \in \{1, \dots, N\} & v_{\text{next}} = v + d \text{ is integer} \\ -\delta_i \leq d_i h_i \leq \delta_i \text{ for all } i \in \{1, \dots, N\} & h_i \text{ is length of ith interval} \end{cases}$$
$$\sum_{i=1}^N \delta_i \leq \Delta \\ -\xi_i \leq v_{i+1} + d_{i+1} - v_i - d_i \leq \xi_i \text{ for all } i \in \{1, \dots, N-1\} \\ \sum_{i=1}^{N-1} \xi_i \leq \Xi \end{cases}$$

$$\mathsf{TR}(\mathbf{v}, \Delta) = \begin{cases} \min_{d, \delta, \xi, \Xi} C^{\mathsf{T}} d + \alpha \Xi & c_i = \int_{t_i}^{t_{i+1}} \nabla (j \circ S)(\mathbf{v})(s) \, \mathrm{d}s \\ \text{s.t. } v_i + d_i \in \mathsf{V} \text{ for all } i \in \{1, \dots, N\} & v_{\mathsf{next}} = \mathsf{v} + d \text{ is integer} \\ -\delta_i \leq d_i h_i \leq \delta_i \text{ for all } i \in \{1, \dots, N\} & h_i \text{ is length of ith interval} \\ \sum_{i=1}^N \delta_i \leq \Delta & \|v_{\mathsf{next}} - \mathsf{v}\|_{L^1} \leq \Delta \\ -\xi_i \leq v_{i+1} + d_{i+1} - v_i - d_i \leq \xi_i \text{ for all } i \in \{1, \dots, N-1\} \\ \sum_{i=1}^{N-1} \xi_i \leq \Xi \end{cases}$$

$$\mathsf{TR}(\mathbf{v}, \Delta) = \begin{cases} \min_{d, \delta, \xi, \Xi} c^{\mathsf{T}} d + \alpha \Xi & c_i = \int_{t_i}^{t_{i+1}} \nabla (l \circ S)(\mathbf{v})(s) \, \mathrm{ds} \\ \text{s.t. } v_i + d_i \in \mathsf{V} \text{ for all } i \in \{1, \dots, N\} & v_{\text{next}} = \mathsf{v} + d \text{ is integer} \\ -\delta_i \leq d_i h_i \leq \delta_i \text{ for all } i \in \{1, \dots, N\} & h_i \text{ is length of } ith \text{ interval} \\ \sum_{i=1}^N \delta_i \leq \Delta & ||v_{\text{next}} - \mathsf{v}||_{L^1} \leq \Delta \\ -\xi_i \leq v_{i+1} + d_{i+1} - v_i - d_i \leq \xi_i \text{ for all } i \in \{1, \dots, N-1\} & \xi_i \text{ is jump height from } i \text{ to } i + \sum_{i=1}^{N-1} \xi_i \leq \Xi \end{cases}$$

$$\mathsf{TR}(\mathbf{v}, \Delta) = \begin{cases} \min_{d, \delta, \xi, \Xi} c^T d + \alpha \Xi & c_i = \int_{t_i}^{t_{i+1}} \nabla (l \circ S)(\mathbf{v})(s) \, \mathrm{ds} \\ \text{s.t. } v_i + d_i \in V \text{ for all } i \in \{1, \dots, N\} & v_{\mathsf{next}} = v + d \text{ is integer} \\ -\delta_i \leq d_i h_i \leq \delta_i \text{ for all } i \in \{1, \dots, N\} & h_i \text{ is length of ith interval} \\ \sum_{i=1}^N \delta_i \leq \Delta & ||v_{\mathsf{next}} - v||_{L^1} \leq \Delta \\ -\xi_i \leq v_{i+1} + d_{i+1} - v_i - d_i \leq \xi_i \text{ for all } i \in \{1, \dots, N - 1\} & \xi_i \text{ is jump height from } i \text{ to } i + 1 \\ \sum_{i=1}^{N-1} \xi_i \leq \Xi & \Xi = \mathsf{TV}(v_{\mathsf{next}}) \end{cases}$$

$$\mathsf{TR}(\mathsf{v}, \Delta) = \begin{cases} \min_{d,\delta,\xi,\Xi} c^{\mathsf{T}}d + \alpha \Xi & c_i = \int_{t_i}^{t_{i+1}} \nabla(i \circ S)(\mathsf{v})(\mathsf{s}) \, \mathrm{ds} \\ \mathsf{s.t.} \ v_i + d_i \in \mathsf{V} \text{ for all } i \in \{1, \dots, N\} & \mathsf{v}_{\mathsf{next}} = \mathsf{v} + d \text{ is integer} \\ -\delta_i \leq d_i h_i \leq \delta_i \text{ for all } i \in \{1, \dots, N\} & h_i \text{ is length of ith interval} \\ \sum_{i=1}^N \delta_i \leq \Delta & ||\mathsf{v}_{\mathsf{next}} - \mathsf{v}||_{L^1} \leq \Delta \\ -\xi_i \leq \mathsf{v}_{i+1} + d_{i+1} - \mathsf{v}_i - d_i \leq \xi_i \text{ for all } i \in \{1, \dots, N-1\} & \xi_i \text{ is jump height from } i \text{ to } i + 1 \\ \sum_{i=1}^{N-1} \xi_i \leq \Xi & \Xi = \mathsf{TV}(\mathsf{v}_{\mathsf{next}}) \end{cases}$$

Conjecture / Work in Progress

Let $h_i = 1$ for all *i*. Then TR(v, Δ) is (weakly) NP hard. (Reduce Knapsack to TR(v, Δ) in polynomial time – construct V appropriately from weights, capacity, and α .)

DISCRETIZED TRUST-REGION SUBPROBLEM IN 1D AS A SHORTEST PATH IN A LAYERED DAG

An edge in a feasible path (feasible *d*) connects different layers. Every feasible path is nonincreasing with respect to the remaining trust region capacity.

DISCRETIZED TRUST-REGION SUBPROBLEM IN 1D AS A SHORTEST PATH IN A LAYERED DAG

An edge in a feasible path (feasible *d*) connects different layers. Every feasible path is nonincreasing with respect to the remaining trust region capacity.

At edge construction we know $v_{i-1} + d_{i-1}$ and $v_i + d_{i+1} \Rightarrow$ allows to put TV term costs on the edges.

An edge in a feasible path (feasible *d*) connects different layers. Every feasible path is nonincreasing with respect to the remaining trust region capacity.

At edge construction we know $v_{i-1} + d_{i-1}$ and $v_i + d_{i+1} \Rightarrow$ allows to put TV term costs on the edges.

Work in Progress

The number of nodes is bounded by #nodes = $|V|N\Delta$. Using A* with a monotone heuristic we can solve TR(v, Δ) in #nodes². The algorithm is pseudo-polynomial.

Ν	h_1	h_2	h_3	h_4	h_5	Тор	SCIP
256	5.726	5.813	5.391	5.79	1.074	1.114	37.133
512	38.762	39.6	38.384	40.454	3.402	4.926	165.257
1024	244.107	285.039	286.998	286.697	9.039	19.906	544.1
2048	1316.92	1600.44	1659.529	1622.13	15.396	56.425	492.082

Figure 3: Cumulative running times (seconds) for test instances of a 1D elliptic control problem for simple heuristics (h_1, \ldots, h_4) , including dual information h_5 vs. topological sorting (Top) and IP solver (SCIP).

Figure 4: Distribution of running times (seconds) for the subproblem solves for A* with h_5 (red) and SCIP (green).

1. Acclerated A* approach beats SCIP and topological sorting (on all tested problems so far) when including dual information.

- 1. Acclerated A* approach beats SCIP and topological sorting (on all tested problems so far) when including dual information.
- 2. Several tried improvements and heuristics for A^{*} (path dominance checks (discard paths with lower remaining L^1 TR capacity and equal or worse objective values); inequalities generated from the fact that the value of Ξ is the solution of an LP over an integral polytope; etc.) have not paid off (additional compute time often exceeds running time saves).

Discussion

- 1. Acclerated A* approach beats SCIP and topological sorting (on all tested problems so far) when including dual information.
- 2. Several tried improvements and heuristics for A^{*} (path dominance checks (discard paths with lower remaining L^1 TR capacity and equal or worse objective values); inequalities generated from the fact that the value of Ξ is the solution of an LP over an integral polytope; etc.) have not paid off (additional compute time often exceeds running time saves).
- 3. As for the analysis, the approach does not generalize to the multidimensional case straightforwardly.

We seek to

minimize
$$J(y) + TV(v)$$
 subject to $y = S(v)$ and $v(x) \in \{\nu_1, \dots, \nu_M\}$ a.e. (Q)

We seek to

minimize
$$J(y) + TV(v)$$
 subject to $y = S(v)$ and $v(x) \in \{\nu_1, \dots, \nu_M\}$ a.e. (Q)

We seek to

minimize
$$J(y) + TV(v)$$
 subject to $y = S(v)$ and $v(x) \in \{\nu_1, \dots, \nu_M\}$ a.e. (Q)

To do so, we

1. define locally optimal solutions (local in terms of variations of the level sets of the controls),

We seek to

minimize
$$J(y) + TV(v)$$
 subject to $y = S(v)$ and $v(x) \in \{\nu_1, \dots, \nu_M\}$ a.e. (Q)

- 1. define locally optimal solutions (local in terms of variations of the level sets of the controls),
- 2. partially linearize the objective and preserve the TV term in a trust region strategy, which

We seek to

minimize
$$J(y) + TV(v)$$
 subject to $y = S(v)$ and $v(x) \in \{\nu_1, \dots, \nu_M\}$ a.e. (Q)

- 1. define locally optimal solutions (local in terms of variations of the level sets of the controls),
- 2. partially linearize the objective and preserve the TV term in a trust region strategy, which
- 3. has partial convergence proofs to first-order optimality conditions so far, and which

We seek to

minimize
$$J(y) + TV(v)$$
 subject to $y = S(v)$ and $v(x) \in \{\nu_1, \dots, \nu_M\}$ a.e. (Q)

- 1. define locally optimal solutions (local in terms of variations of the level sets of the controls),
- 2. partially linearize the objective and preserve the TV term in a trust region strategy, which
- 3. has partial convergence proofs to first-order optimality conditions so far, and which
- 4. yields large-scale integer linear programs that need to be solved.

- Ambrosio, L., N. Fusco, and D. Pallara. 2000. Function of bounded variation and free discontinuity problems. Courier Corporation.
- Braides, A., S. Conti, and A. Garroni. 2017. "Density of polyhedral partitions." Calculus of Variations an Partial Differential Equations 56 (2): 28.
- Clason, C., and K. Kunisch. 2014. "Multi-bang control of elliptic systems." In Annales de l'Institut Henri Poincaré (c) Analysé Non Linéaire, 31:1109–1130. Elsevier.
- Hante, Falk M, and Sebastian Sager. 2013. "Relaxation methods for mixed-integer optimal control of partial differential equations." https: //doi.org/10.1007/s10589-012-9518-3, Computational Optimization and Applications 55 (1): 197-225.
- Kirches, C., P. M., and S. Ulbrich. 2020. "Compactness and convergence rates in the combinatorial integral approximation decomposition." *Mathematical Programming*: 1–30.

- Kunisch, Karl, and Daniel Wachsmuth. 2013. "On time optimal control of the wave equation and its numerical realization as parametric optimization problem." *SIAM Journal on Control and Optimization* 51 (2): 1232–1262.
- Leyffer, S., and P. M. 2021. "Sequential linear integer programming for integer optimal control with total variation regularization." arXiv preprint arXiv:2106.13453.
- Lin, Fu, Sven Leyffer, and Todd Munson. 2016. "A two-level approach to large mixed-integer programs with application to cogeneration in energy-efficient buildings." Computational Optimization and Applications 65 (1): 1–46.
- M., P. 2021. "Relaxed multibang regularization for the combinatorial integral approximation." SIAM Journal on Control and Optimization.
- M., P., and C. Kirches. 2020a. "Improved regularity assumptions for partial outer convexification of mixed-integer PDE-constrained optimization problems." ESAIM: Control, Optimisation and Calculus of Variations 26:32.

- —. 2020b. "Multidimensional Sum-Up Rounding for elliptic control systems." Accepted, SIAM Journal on Numerical Analysis.
- Maurer, H., and N. P. Osmolovskii. 2004. "Second order sufficient conditions for time-optimal bang-bang control." SIAM Journal on Control and Optimization 42 (6): 2239–2263.
- Sager, S., H.-G. Bock, and M. Diehl. 2012. "The Integer Approximation Error in Mixed-Integer Optimal Control." Mathematical Programming, Series A 133 (1–2): 1–23.
- Stadler, G. 2009. "Elliptic optimal control problems with L1-control cost and applications for the placement of control devices." Computational Optimization and Applications 44 (2): 159.
- Tröltzsch, F. 1979. "A Minimum Principle and a Generalized Bang-Bang-Principle for a Distributed Optimal Control Problem with Constraints on Control and State." ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 59 (12): 737–739.