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Exercises for Lecture Course on Numerical Optimization (NUMOPT)
Albert-Ludwigs-Universität Freiburg – Winter Term 2019-2020

Exercise 3: Unconstrained Newton-type Optimization,
Globalization Strategies

Prof. Dr. Moritz Diehl, Dimitris Kouzoupis, Andrea Zanelli and Florian Messerer

Aim of this exercise is to become familiar with different Newton-type methods and learn their charac-
teristics in practice. You will then combine a Quasi-Newton-method with globalization strategies to write
your own solver for the hanging chain problem.

Exercise Tasks

1. Regularization: Prove that a regularized Newton-type step xk+1 = xk − (Bk +αI)−1∇f(xk), with
xk ∈ Rn, Bk ∈ Rn×n a (symmetric) Hessian approximation, α a positive scalar and I the identity
matrix of suitable dimension, converges to a small gradient step xk+1 = xk − 1

α
∇f(xk) as α→∞.

(2 points)

2. Unconstrained minimization: In this task we will implement different Newton-type methods that
minimize the nonlinear function

f(x, y) =
1

2
(x− 1)2 +

1

2
(10(y − x2))2 + 1

2
y2, (1)

with x, y ∈ R. You can use the provided MATLAB script to get an idea of the shape of the function.

(a) Derive, first on paper, the gradient and Hessian matrix of the function in (1). Then, rewrite it
in the form f(x, y) = 1

2
||R(x, y)||22 where R : R2 → R3 is the residual function. Derive the

Gauss-Newton Hessian approximation and compare it with the exact one. When do the two
matrices coincide?

(2 points)

(b) Implement your own Newton method with exact Hessian information and full steps. Start from
the initial point (x0, y0) = (−1, 1) and use as termination condition ||∇f(xk, yk)||2 ≤ 10−3.
Keep track of the iterates (xk, yk) and add them to the provided contour plot. (2 points)

(c) Update your code to use the Gauss-Newton Hessian approximation instead. Plot the difference
between exact and approximate Hessian as a function of the iterations (evaluate both the exact
and the Gauss-Newton Hessian at the iterates generated by the Gauss-Newton algorithm). Use
the MATLAB function norm to measure this difference.

(2 points)

(d) Check how the steepest descent method performs on this example. Your Hessian approximation
now is αI where α is a positive scalar and I the identity matrix. Try α = 100, 200 and 500. For
which values does your algorithm converge?

(1 point)

(e) Compare the performance of the implemented methods. Consider the iteration path (xk, yk),
the number of iterations and the run time. You can use MATLAB’s tic toc to measure time.

(1 point)
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3. Lifted Newton method: Consider the scalar nonlinear function F : R→ R, F (w) = w16 − 2.

(a) Implement in MATLAB the Newton method in order to numerically find a root of F (w). Use
‖F (w)‖2 < 10−12 as convergence criterion. Plot how the residuals evolve. Test the algorithm
for different initial guesses and analyze the convergence behaviour of the algorithm.

(1 point)

(b) Implement now a Newton-type algorithm that exploits a fixed approximation of the Jacobian

wk+1 = wk −M−1F (wk),

where M = ∇>F (w0) is the Jacobian of F at the initial guess w0. Use the conditions for local
Newton-Type convergence (Theorem 8.4) to derive a bound on the convergence region. Test
numerically for which region(s) of initial values w0 the algorithm converges (in 104 iterations
or less).

(2 points)

(c) An equivalent problem to (a) can be obtained by lifting the original one to a higher dimensional
space

F̃ (w) =


w2 − w2

1

w3 − w2
2

w4 − w2
3

−2 + w2
4

 .
Implement the Newton method for this lifted problem and compare the convergence of the two
algorithms. Use w0 = 100. Initialize all variables wi of the lifted method at this value.

(1 point)

(d) Show that the Newton method is guaranteed to converge to a root (if it exists) for the root fin-
ding problem f(x) = 0, where f is any strictly monotonically increasing convex differentiable
function f : R→ R.

(1 point)

4. Convergence of damped Newton’s method: Let f be a twice continuously differentiable function
satisfying LI � ∇2f(x) � mI for some L > m > 0 and let x∗ be the unique minimizer of f
over Rn.

(a) Show that for any x ∈ Rn:

f(x)− f(x∗) ≥ m

2
‖x− x∗‖22,

(1 point)

(b) Let {xk}k≥0 be the sequence generated by the damped Newton’s method with constant stepsize
tk =

m
L

. Show that:

f(xk)− f(xk+1) ≥
m

2L
∇f(xk)>(∇2f(xk))

−1∇f(xk).

(2 points)

(c) Show that xk → x∗ as k →∞.
(2 points)
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5. Hanging chain, revisited: In this task you will solve the unconstrained minimization problem of the
hanging chain using the BFGS method in combination with back tracking and the Armijo condition.
Consider the non-convex case where the N + 1 springs can be both compressed and expanded from
their rest length Li = L/(N + 1). Recall that in this case the objective function is given by:

Vchain(y, z) =
1

2

N∑
i=0

D(
√

(yi − yi+1)2 + (zi − zi+1)2 − Li)2 + g0

N+1∑
i=0

mzi. (2)

Note that the indices range from 0 to N+1. This is in order to fix the chain ends without formu-
lating an equality constraint, i.e., y0 = −2, yN+1 = 2 and z0 = zN+1 = 1 are treated as para-
meters. Choosing the indices like this we still have decision variables y1, . . . , yN and z1, . . . , zN .
The provided MATLAB function [F] = hc obj(x,param) returns the value of this nonlinear
function for a given set of parameters defined in the data structure param and a point x ordered as
x = [y1, z1, . . . , yN , zN ]

>.

(a) Write your own MATLAB function [F,J] = finite difference(fun,x,param)
that calculates the function value and the Jacobian of function fun at x using finite differences.
Note that the argument fun is a function handle. You can then call your function using the
syntax [F,J] = finite difference(@hc fun,x,param) to evaluate the Jacobian
of our objective at x. Calling eps in MATLAB returns floating point precision.

(2 points)

(b) Complete the template file main.m to find the rest position of the hanging chain using the
steepest descent method with backtracking and the Armijo condition.

(2 points)

(c) Now update your code to perform BFGS updates on your Hessian approximation. How many
iterations does your new scheme need to converge?
Remark: The BFGS Hessian approximation is guaranteed to be positive-definite if and only
if the curvature condition sTy > 0 holds. A common workaround to ensure that the search
direction is always a descent direction is to check weather this condition holds or not and to
skip the BFGS update in case positive-definiteness is not guaranteed.

(2 points)

This sheet gives in total 26 points.
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