
i
i

“ex4” — 2019/12/2 — 11:48 — page 1 — #1 i
i

i
i

i
i

Exercises for Lecture Course on Numerical Optimization (NUMOPT)
Albert-Ludwigs-Universität Freiburg – Winter Term 2019-2020

Exercise 4: Calculation of Derivatives,
Equality Constrained Optimization

Prof. Dr. Moritz Diehl, Dimitris Kouzoupis, Andrea Zanelli and Florian Messerer

Aim of this exercise is to gain experience with all derivative computation methods discussed in the
class. You will then explore the concepts of equality constrained optimization discussed in the lecture.

Exercise Tasks

1. Control of a dynamic system: Our goal is to drive the state xk ∈ R of a discrete time system to
the origin using controls uk ∈ R in N time intervals, where subscript k denotes discrete time. More
precisely, we are interested in solving the optimization problem:

minimize
u,x

N−1∑
k=0

u2k + qx2N (1a)

subject to: x0 = x̄0 (1b)

xk+1 = xk +
T

N
((1− xk)xk + uk), k = 0, . . . N − 1, (1c)

with initial condition x̄0, control trajectory u = [u0, . . . , uN−1]
> ∈ RN , state trajectory x =

[x0, . . . , xN]> ∈ RN+1 and terminal time T (corresponding to discrete time N). The objective (1a)
expresses our aim to bring the terminal state xN to zero, using the least amount of effort in terms
of control actions uk. Weighting factor q ∈ R defines the trade-off between these two aims. The
equality constraints (1b) and (1c) uniquely determine the state trajectory x0, . . . xN given controls
u0, . . . , uN−1. Therefore we can write (1) in the equivalent unconstrained form:

minimize
u

N−1∑
k=0

u2k + Φ(u), (2)

using the constraints to eliminate all states xk, and to define the nonlinear function Φ(·) : RN → R.
This function is implemented for you in MATLAB (Phi.m). You can call it as f = Phi(u,
param) where u ∈ RN is a control trajectory and param a structure with the problem parameters,
similar to the previous exercise sheet. You will now implement different methods for obtaining
derivatives of Φ and compare their results. We will use a random control trajectory urand to evaluate
the derivatives. This has already been implemented for you in test derivatives.m.

(a) Use your code from last week to differentiate Φ(u) at urand with finite differences.
(1 point)

(b) Using the same syntax, write a function [F,J] = i trick(fun,x,param) that calcu-
lates the Jacobian of Φ(u) using the imaginary trick.

(1 point)

(c) Now let’s implement both forward and backward modes of Automatic Differentiation. Before
you start coding, which of the two you think would perform faster in our example and why?

(1point)

1

i
i

“ex4” — 2019/12/2 — 11:48 — page 2 — #2 i
i

i
i

i
i

(d) Write a MATLAB function [F,J] = Phi FAD(u,param) that returns the function eval-
uation and the Jacobian of Φ(u) using the forward mode of AD. You can start by copying the
code from the given function Phi.

(2 points)

(e) Write a MATLAB function [F,J] = Phi BAD(u,param) that implements the backward
mode of AD.

(2 points)

(f) The ’AD’ in ’CasADi’ stands for Algorithmic Differentiation, since this is how CasADi com-
putes derivatives. Using CasADi we can build the Jacobian of our nonlinear function as a
symbolic expression within a few lines only.
Complete the template casadi script.m to compute the Jacobian of Φ(u). Note that this
time we are not using the Opti() environment, since we are interested in derivatives only.

(1 point)

(g) Once you have everything implemented, run the script test derivatives.m to check (and
demonstrate) that your results are correct. If you did not implement all methods, comment out
or delete the corresponding lines.

(0 points)

(h) Use MATLAB’s tic toc to measure the total time spent in the derivative calculations for
the different functions you have implemented, with N = 200. For CasADi make sure you
are only measuring the function evaluation time, i.e., without the setup time / time for running
casadi script.m. How do the timings change if you set N = 1000? Give a short reason
for this behaviour. Report the time values for all methods and both values of N .
Remark: Depending on the performance of your CPU you may adapt the given values of N
for purpose of better demonstration / to decrease the runtime. The cost of calling one of your
derivative functions should be in the order of magnitude from approx. 10−5 to 1 seconds.

(1 point)

(i) Extra: Solve the optimization problem in (1) using the BFGS method with globalization sim-
ilarly to the previous exercise (you can simply adapt your code from the last exercise sheet).
Plot the state and controls as a function of time to confirm that the system behaves as expected.
Don’t forget to add the derivative of the quadratic term

∑N−1
k=0 u

2
k to your result for ∇Φ(u)>

when computing the Jacobian of your objective function. Use N = 50, x0 = 2, T = 5 and
q = 50.

(2 bonus points)

2. Optimal perturbation for finite differences: Assume we have a twice continuously differentiable
function f : R → R and we want to evaluate its derivative f ′(x0) at x0 with finite differences.
Further assume that in a neighborhood N (x0) it holds:

|f ′′(x)| ≤ f ′′max, |f(x)| ≤ fmax (3)

with N (x0) := {x |x0 − δ ≤ x ≤ x0 + δ}, δ > t and t the perturbation in the finite difference
approximation.

The function f(x) can be represented on a computing system with accuracy εmach, i.e., it is perturbed
by noise ε(x):

f̃(x) = f(x)(1 + ε(x)) |ε(x)| ≤ εmach. (4)

(a) Compute a bound ψ on the error of the finite difference approximation of f ′(x0)∣∣∣∣∣ f̃(x0 + t)− f̃(x0)

t
− f ′(x0)

∣∣∣∣∣ ≤ ψ(t, fmax, f
′′
max, εmach). (5)

2

i
i

“ex4” — 2019/12/2 — 11:48 — page 3 — #3 i
i

i
i

i
i

(2 points)

(b) Which value t∗ minimizes this bound and which value has the bound at t∗?
(1 point)

(c) Extra: Do a similar analysis for the central differences where f̃ ′(x0) = f̃(x0+t)−f̃(x0−t)
2t

.
Hint: you can assume that also the third derivative is bounded in [x0 − t, x0 + t].

(2 bonus points)

3. Simple equality constrained optimization: Recall the simple equality constrained example dis-
cussed in the lecture,

minimize
x1,x2

x2 (6)

subject to: x21 + x22 − 1 = 0 (7)

which consists of a linear objective and a nonlinear equality constraint.

(a) Study the template file fmincon example.m to understand how fmincon works. You
will need to use it yourself in the next task. Type doc fmincon or help fmincon in the
command window for more details on the function.

(0 points)

(b) On paper derive the first order necessary conditions for this problem. Code a simple Newton
method of your choice to find the optimal solution. To which point (or points) does your
method converge?

(2 points)

(c) Check whether you have found the minimum point using the Second Order Sufficient Condi-
tions or Second Order Necessary Conditions (on paper).

(1 point)

4. Hanging chain, re-revisited: Let us consider once again the example of the hanging chain that we
will now solve with fmincon. This time we fix the distance between two adjacent masses to a
constant length l = L/(N + 1). Removing the potential energy of the springs from our objective
function we are left with the following optimization problem:

minimize
y,z

N+1∑
i=0

mg0 zi (8a)

subject to (y0, z0) = (−2, 1) (8b)
(yN+1, zN+1) = (2, 1) (8c)
(yi − yi+1)

2 + (zi − zi+1)
2 − l2 = 0, for i = 0, . . . N (8d)

For your experiments use the parameter values N = 21, L = 5 m, m = 0.2 kg and g = 9.81 m
s2

.

(a) Write a function [f] = chain objective(x,param) that implements the objective
and a second function [C,Ceq] = chain constraints(x,param) that implements
theN+1 nonlinear equality constraints. Order the decision vector x as x = [y1, z1, . . . , yN , zN]>

and eliminate the edge variables y0, z0, yN+1, zN+1 using the constraints (8b) and (8c), similar
to the last exercise sheet.

(2 points)

(b) Use fmincon to solve the equality constrained optimization problem. You may need to tune
the options to allow the algorithm to fully converge to an optimal solution. You can illustrate
your results with the plotting function plot chain(x,param).

(2 points)

3

i
i

“ex4” — 2019/12/2 — 11:48 — page 4 — #4 i
i

i
i

i
i

(c) Evaluate the Jacobian of your constraints at the optimal solution (e.g. by using the i trick
function from the first exercise) and check whether LICQ holds. Hint: Use the MATLAB
command rank.

(2 points)

(d) Extend your function [C,Ceq] = chain constraints(x,param) to fix a third point
of the chain somewhere between the other two, as demonstrated in Figure 1.

(1 point)

(e) Assuming you can fix only one mass point at a time (apart from the edges), fixing which mass
points would lead to infeasibility or LICQ violation? Why? Choose a feasible set of constraints
for your problem and confirm your intuition numerically. For fixing mass point k to position
(ȳ, z̄) add the equality constraints yk = ȳ and zk = z̄ to your NLP.

(2 points)

y
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

z

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Optimal position of chain

Figure 1: Hanging chain with three fixed masses.

5. LICQ and Newton method: Consider the following nonlinear equality constrained optimization
problem:

min
x

f(x)

s.t. g(x) = 0,

where x ∈ Rn, f : Rn → R, g : Rn → Rm and the linear system associated with the k-th iteration
of the Newton method: [

B AT

A 0

](
∆x
−∆λ

)
= −

(
∇f(xk)−∇g(xk)λ

g(xk)

)
(9)

with B := ∇2
xf(xk)−

∑p
i=1 λi∇2

xgi(x
k) and A = ∇xg(xk)>.

Prove that if A has full row rank and ZTBZ � 0, with the columns of Z ∈ Rn×(m−n) forming
a basis for the null space of A, the iteration matrix in (9) is invertible. Remark: this provides a
sufficient condition under which a search direction can be obtained. (2 points)

This sheet gives in total 26 points and 4 bonus points.

4

