Systems and Control 2 (SC2) Albert-Ludwigs-Universität Freiburg - Wintersemester 2015/2016

Exercises 1: Review of linear systems theory (Thursday 29.10.2015 at 15:00 in Room SR 00 014)

Dr. Jörg Fischer and Prof. Dr. Moritz Diehl

1. A LTI-System is described by the ODE $2\ddot{y} + 6\dot{y} + 8y = 27\ddot{u}$. What is the characteristic polynomial $p_A(\lambda)$?

(a) $2\lambda^2 - 6\lambda - 8$ (b) $2\lambda^3 + 6\lambda^2 + 8\lambda - 27$ (c) $\lambda^2 + 3\lambda + 4$ (d) $\lambda^2 - 6\lambda + 2$	

2. Determine the poles of the system that is described by the following ODE: 17.1 10

3y - 15y + 18y = 4u - 5u.			
(a) (2,3)	(b) (6,9)	(c) $(-6, -9)$	(d) $(-2, -3)$

3. What is the solution x(t) of the ODE $\dot{x}(t) = u(t) - x(t)$, with an initial state x(0) = 1?

(a) $\qquad e^{-t} + e^t \int_0^t u(\tau) d\tau$	(b) $\qquad e^{-t} + e^{-t} \int_0^t e^{\tau} u(\tau) d\tau$
(c) $u(t) + \int_0^t x(\tau) d\tau$	(d) $1 + e^{u(t)}$

- 4. The Flückiger See has a temperature T. During the day, solar radiation heat Q warms the lake. At the same time, the cool lake soil (constant temperature T_0) extracts heat from the lake. The temperature of the lake during the day is approximately described by the ODE $\dot{T} = k_1 \cdot Q - k_2 \cdot (T - T_0)$. What is the steady state temperature T_{ss} , that sets in due to a constant heat input Q_{ss} ? $(b) \boxed{k_1 \cdot Q_{ss} + T_0 \cdot k_2} (c) \boxed{\frac{k_2 \cdot Q_{ss} + T_0}{k_1}}$ $\tfrac{Q_{\mathrm{ss}}+k_1\cdot T_0}{k_2}$ $(\mathbf{d}) \boxed{\frac{k_1 \cdot Q_{\mathrm{ss}}}{k_2} + T_0}$ (a)
- 5. An electrical oscillator is described by the ODEs $\frac{dv_C}{dt} = \frac{i}{C}$ and $\frac{di}{dt} = \frac{1}{L}(v_E iR v_C)$. Take $x = \begin{bmatrix} i \\ v_C \end{bmatrix}$ as a state and $u = v_E$ as an input. Transform the system into the form $\dot{x} = Ax + Bu$. Specify A and B.

1	5	· 1	5
(a) $A =$	$\begin{bmatrix} 0 & 1/C \\ -1/L & -R/L \end{bmatrix}, B =$	$\begin{bmatrix} 0\\1/L \end{bmatrix} \tag{b}$	$\Box A = \begin{bmatrix} -1/L & 0 \\ -R/L & 1/C \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1/L \end{bmatrix}$
(c) $A =$	$\begin{bmatrix} -R/L & -1/L \\ 1/C & 0 \end{bmatrix}, B =$	$\begin{bmatrix} 1/L \\ 0 \end{bmatrix} \qquad \qquad (d)$	$\Box A = \begin{bmatrix} 1/C & -R/L \\ 0 & -1/L \end{bmatrix}, B = \begin{bmatrix} 1/L \\ 0 \end{bmatrix}$

6. A farm tractor is described by the state equations $\dot{x}_1 = V \cos(x_2)$ and $\dot{x}_2 = \frac{V}{L} \tan(u)$. In these equations, x_1 is the X-coordinate and x_2 is the angel of orientation of the tractor. The Y-coordinate is not of interest in this example. Linearise the system in the equilibrium point $u_{ss} = 0$ and $x_{ss} = \begin{bmatrix} 0 & \frac{\pi}{2} \end{bmatrix}^T$. Transform the linearised system in the form $\dot{x} = Ax + Bu$, and specify A and B.

(a) $\begin{bmatrix} 0 & -V \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ V/L \end{bmatrix}$	(b) $\begin{bmatrix} A = \begin{bmatrix} V/L & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ V\cos(1) \end{bmatrix}$
$\begin{bmatrix} (c) \\ A = \begin{bmatrix} V/L & 0 \\ o & V \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$ (\mathbf{d}) \square A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 \\ -V/L \end{bmatrix} $

7. A LTI-system is described by the ODE $6\ddot{y} + 3\dot{y} + y = 4\ddot{u} + 2u$. What is the corresponding transfer function G(s)?

	2	0.0.0		1	U	()
(a) $\frac{4s^2+2}{6s^2+3s+1}$		(b) $6s^2 + 3s + 1$	(c) $\frac{2s}{3s+1}$			(d) $\frac{6s^2 + 3s + 1}{4s + 2}$

8. A LTI-System is described by the state space model $\dot{x} = Ax + Bu$, y = Cx + Du, where $A = \begin{bmatrix} 0 & 2 \\ -1 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, D =D = [0] What is the corresponding transfer function G(s) of the system?

$D = \begin{bmatrix} 0 \end{bmatrix}$. What is the corresponding transfer function $O(3)$ of the system?					
(a) $2s+1 \over s+1$	(b) $\frac{s+4}{s^2+2s+2}$	(c) $\frac{s+2}{s+1}$	(d) $\qquad \frac{2s+1}{(s+1)^2}$		

9. Which LTI-system is described by the transfer function $G(s) = \frac{s^2 + 5s - 1}{2s^2 + 3}$?

(a) $\qquad 2\ddot{y} + 3y = \ddot{u} + 5\dot{u} - u$	(b)
(c) $2\dot{y} + 3 = \dot{u} + 5u - 1$	(d) $\dot{y} + 5y - 1 = 2\dot{u} + 3$

10. Consider the following Nyquist diagram.

What is the corresponding transfer function $G(s)$?					
(a) $\frac{1}{s+2}$	(b) $\frac{6}{s^2+s+3}$	(c) $\frac{s}{s^2+s+2}$	(d) $\frac{1}{s^2 + s + 1}$		

11. Consider the transfer function $G(s) = \frac{1}{s^2+2s+10}$, what is the corresponding Bode diagram?

