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Systems and Control II (SC2)
Albert-Ludwigs-Universität Freiburg – Wintersemester 2015/2016

Exercises 13: LQR, state space regulation and output feedback control
(Thursday 04.02.2016 at 15:00 in Room SR 00 014)

Dr. Jörg Fischer, Prof. Dr. Moritz Diehl and Jochem De Schutter

A magnetic ball with mass M is suspended in midair by an electromagnet, that exerts a magnetic force on the ball in order to compensate
for the gravitational force working on it, as shown in Fig. 1. The magnetic force is induced by the current i(t) going through the
electromagnet.
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Figure 1: Set-up of the magnetic suspension system.

The state equations of the system are given by

M
d2h(t)

dt2
= Mg − Ki(t)2

h(t)

v(t) = L
di(t)

dt
+ i(t)R ,

where h(t) is the distance of the ball with respect to the electromagnet, K a constant that determines the magnetic force, v(t) the applied
voltage and where L and R are respectively an inductance and a resistance. The parameter values are M = 0.05kg, K = 0.0001,
L = 0.01H and R = 1Ω. The system is linearised around the point hnom = 0.01m, with a nominal current inom = 7A. The states of
the system are chosen as x(t) =

[
∆h(t) ∆ḣ(t) ∆i(t)

]T
, with ∆h(t) = h(t) − hnom, and ∆i(t) = i(t) − inom. The input u(t) of

the linearised system is the applied voltage deviation ∆v(t) = v(t)−vnom, and the output y(t) is the height deviation of the ball ∆h(t).
The dynamics of this system are described by the following state space model:

ẋ(t) =

 0 1 0
980 0 −2.8
0 0 −100

x(t) +

 0
0

100

u(t)

y(t) =
[
1 0 0

]
x(t) .

The different variables are subject to following limitations:

|∆v(t)| ≤ 13V

|∆h(t)| ≤ 0.005m

|∆i(t)| ≤ 7A .

There is no explicit limitation on ∆ḣ(t). The goal of this exercise is to design an optimal controller that is able to regulate and stabilize
the output of this system around a certain constant reference height deviation r 6= 0, by using state space controller design methods.

1. Design of an LQR-controller

(a) Is the system in this set-up BIBO- and/or Lyapunov stable?

(b) Is the system controllable?

(c) Assume that the system states are all measurable. Formulate the LQ control design task for an optimal full-state feed-
back controller K and choose appropriate weighting matrices Qx and Qu. Consider the evolution of the state ∆ḣ(t) as
unimportant when choosing Qx.

(d) (MATLAB) Compute the LQR-controller that minimizes the cost function J(x0, u(t)) formulated in (1.c), by using the
function lqr.
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(e) (MATLAB) Write down the closed-loop state equation for this system and simulate the natural response.

2. Design of the feedforward controller for regulation

(a) Design a feedforward controller for a constant reference input r 6= 0. Evaluate the feedforward matrix in MATLAB.

(b) Write down the closed-loop state equation for the feedback system that combines the LQR state feedback controller with the
feedforward controller designed in (2.a).

3. Design of the Luenberger observer

(a) Assume now that the states of the system cannot be directly measured. Only the output y(t) = ∆h(t) is measured. Is the
system observable?

(b) Determine the appropriate pole locations for a Luenberger observer that feeds back an estimate x̂(t) of the actual system
state x(t) to the state feedback controller computed in (1.d).

(c) (MATLAB) Compute the Luenberger gain L that places the observer poles in their desired locations. Do we need to iterate
on the state feedback controller design?

(d) Write down the state equation for the closed-loop system with feedback and feedforward controller as well as with the state
estimator. Is this closed-loop system stable?

(e) (MATLAB) Simulate with the function lsim the step response of the regulating closed-loop system with and without the
observer and compare. The reference input r = 0.002m. In the simulation, set the initial state of the system x0 =[
−0.0025m 0 1A

]T
, and set the observer initial state x̂0 = 0. What would happen if we would set these initial states

equal?
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