Systems and Control II (SC2) Albert-Ludwigs-Universität Freiburg – Wintersemester 2015/2016

Exercises 7: Disturbance Feedforward and Cascaded Control (Thursday 10.12.2015 at 15:00 in Room SR 00 014)

Dr. Jörg Fischer, Prof. Dr. Moritz Diehl and Jochem De Schutter

1. Consider a DC-motor in the feedback control loop shown in Fig. 1. The plant G(s) and the lead controller K(s) are given by

$$G(s) = \frac{1}{s(s+1)} \quad \text{and} \quad K(s) = 10 \frac{\frac{s}{2} + 1}{\frac{s}{10} + 1}$$

The DC-motor drives a load $\tau_{l}(t)$, that enters the feedback loop as an input disturbance $\frac{\tau_{l}(t)}{a_{1}}$, with $a_{1} = 1 \frac{V}{Nm}$.

Figure 1: Set-up of the feedback control loop.

- (a) Determine the steady state error of the closed-loop system for both a step reference input and a step input disturbance and evaluate.
- (b) Draw the block diagram for the case that the closed-loop system is extended by a disturbance feedforward controller.
- (c) Determine the ideal disturbance feedforward controller in order to achieve a zero steady state error for a step load torque, i.e. a step input disturbance.
- 2. A process can be divided into two partial processes $G_1(s)$ and $G_2(s)$ in series. The transfer functions of these processes are given by

$$G_1(s) = \frac{k_1}{(T_1s+1)(T_2s+1)}$$
 and $G_2(s) = \frac{k_2}{T_3s+1}$

Design a cascaded controller for this process, so that the overall closed-loop system has an overshoot $M_p < 5\%$ and a zero steady state error for a step reference input. The process parameters are $k_1 = 3$, $k_2 = 10$, $T_1 = \frac{1}{3}$ sec, $T_2 = \frac{1}{5}$ sec and $T_3 = 1$ sec.

- (a) Draw the block diagram of a cascaded control-loop for the process $G(s) = G_1(s)G_2(s)$.
- (b) Design a lead controller $K_1(s) = k_D \frac{T_D s + 1}{T'_D s + 1}$ for $G_1(s)$, so that the inner closed-loop system has a settling time $T_s \le 0.5$ sec and an overshoot $M_p < 5\%$.

Hint: Choose the lead zero so that it cancels out the slowest process pole. Analytically determine expressions for the desired $T'_{\rm D}$ and $k_{\rm D}$, by analysing the expressions for the closed-loop poles.

- (c) Approximate the obtained inner closed-loop system by a first order system $G_a(s) = \frac{k_a}{T_a s + 1}$.
- (d) Design a PI-controller $K_2(s) = k_I(1 + \frac{T_I}{s})$ for the outer process, consisting of $G_a(s)$ and $G_2(s)$, in order to meet the design requirements.

Hint: Apply the same design strategy as for the inner lead controller $K_1(s)$. Cancel out the slowest open-loop pole and analyse the expressions of the closed-loop poles.

- (e) (MATLAB) The approximation of the inner closed-loop transfer function, $G_a(s)$, is only valid for frequencies below $\frac{1}{T_a}$. Check if the cross-over frequency of the outer open loop ($K_2(s)G_a(s)G_2(s)$) remains below this limit.
- (f) (MATLAB) Evaluate the step response of the overall closed-loop system. Compare it with the step response of a non-cascaded feedback system with the overall PI-controller $K(s) = 0.03(1 + \frac{1}{s})$.