
i
i

“Session˙10” — 2016/1/17 — 3:16 — page 1 — #1 i
i

i
i

i
i

Systems and Control II (SC2)
Albert-Ludwigs-Universität Freiburg – Wintersemester 2015/2016

Exercises 10: Discrete controller design
(Thursday 14.01.2016, online exercise)

Dr. Jörg Fischer, Prof. Dr. Moritz Diehl and Jochem De Schutter

1. Compute the discrete equivalents of the controller
K(s) =

a

s+ a
,

where a is a given parameter, using a) the forward rectangular rule, b) the backward rectangular rule, and c) the trapezoid rule
(Tustins method). Consider the sample time Tp also as a given parameter.

SOLUTION:

a) Forward rule: Kz(z) = G(s)|s= z−1
TP

⇒ Kz(z) =
a

z−1
TP

+ a
=

aTP
z − 1 + aTP

b) Backward rule: Kz(z) = G(s)|s= z−1
zTP

⇒ Kz(z) =
a

z−1
zTP

+ a
=

aTPz

z − 1 + aTPz
=

aTPz

z(1 + aTP)− 1

=
aTP

1 + aTP
· z

z − 1
1+aTP

c) Tustins method: Kz(z) = G(s)|s= 2
TP

z−1
z+1

⇒ Kz(z) =
a

2
TP

z−1
z+1 + a

=
aTP(z + 1)

2(z − 1) + aTP(z + 1)
=

aTP(z + 1)

(2 + aTP)z − 2 + aTP

=
aTP

2 + aTP
· z + 1

z + −2+aTP

2+aTP

2. Use the zero-pole matching method to compute the discrete equivalent of the controller

K(s) =
a

s+ a
,

where a is a given parameter. Consider the sample time Tp also as a given parameter. It is desired that the discrete controller
shows no delay in its discrete time response.

SOLUTION:

Procedure:

(a) mapping poles: The pole s1 = −a of K(s) will map to the pole z1 = es1Tp of Kz(z)

(b) mapping zeros: K(s) has no zeros. Hence, there are no zeros that have to be mapped.
(c) additional zeros at -1: to have a discrete time response without a delay, n-q zeros at -1 have to be added, where n is the number

of poles of K(s) and q is the number of zeros of K(s). Hence, we have to include a (z+1) term in Kz(z). (Comment: When
a delay of 1 is desired in the discrete response, then n-q-1 zeros are added at -1.

Combining a) to c), this gives the prelimary result:

K∗
z (z) =

z + 1

z − e−aTP

(d) match the dc gain: The final controller is Kz(z) = kcK
∗
z (z) where the gain kc has to be determined such that

K(s)|s=0
!
= Kz(z)|z=1

Therefore,

1
!
= kc

2

1− e−aTP

⇔ kc =
1− e−aTP

2
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The final result is

Kz(z) = kcK
∗
z (z) =

(z + 1)(1− e−aTP)

2(z − e−aTP)

3. Use the ZOH-method to compute the discrete equivalent of the controller

K(s) =
a

s+ a
,

where a is a given parameter. Consider the sample time Tp also as a given parameter.

SOLUTION: The ZOH equivalent is calculated via

Kz(z) = (1− z−1)Z

{
L−1

{
K(s)

s

}∣∣∣∣
t=kTp

}
.

Comment: It is common sense to abbreviate the above equation by

Kz(z) = (1− z−1)Z
{
K(s)

s

}
,

although this does not describe the process precisely.

Using number 6 of the table for z- and laplace-transforms, we find

Z
{
K(s)

s

}
= Z

{
a

s(s+ a)

}
=

(1− e−aTP)z

(z − 1)(z − e−aTP)

Therefore, the final result is

Kz(z) = (1− z−1)
(1− e−aTP)z

(z − 1)(z − e−aTP)

=
z − 1

z

(1− e−aTP)z

(z − 1)(z − e−aTP)

=
1− e−aTP

z − e−aTP

4. Design a discrete controller for a DC-motor that is preceeded by a zero-order hold (see 1), so that the closed-loop system has an
overshoot of no more than 20%, a rise time Tr < 0.3 s, and a settling time of not more than 2s. Use the discrete root locus method
to evaluate different controller types and to tune the parameters of the appropriate controller. The sampling time is TP = 0.1 ms .
The DC-motor can be approximately described in continuous-time by

G(s) =
1

s(s+ 1)
.

ZOH G(s)
u(k) y(t) y(k)

Kz(z)
r(k) u(t)

Figure 1: Diagram of a discrete time system

(a) Assume that the closed-loop continuous system can be approximated by a dominant pole pair. Translate the specifications
of the continuous closed-loop system into corresponding requirements on the step response, using the dynamic behavior
heuristics in Table 1.

(b) Discretize the DC-motor preceeded by the ZOH.

(c) (MATLAB) Consider a proportional controller Kz(z) = kp. Plot the root locus of the closed-loop system with respect to kp.
Which value of kp allows us to meet the design objectives?

(d) (MATLAB) Consider a lead compensator Kz(z) = kp
z−z01
z−z1 . Choose the parameters z01, z1, and kp so that the design

objectives are met.
Hint: Use the MATLAB-function rltool and activate the grid over the context menu.

(e) What is the steady state error for a step input of the closed-loop system using the lead-compensator from d).
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Peak time Tm π

ω0

√
1−ζ2

Rise time Tr 1.8
ω0

Settling time T5% 3
ζω0

Settling time T2% 4.5
ζω0

φζ ζ ∆h

66◦ 0.4 25%

54◦ 0.58 10%

45◦ 0.7 5%

37◦ 0.8 2%

Table 1: Dynamic behavior heuristics of a second order system with complex conjugate poles ζω0 ± jω0

√
1− ζ2 for ζ < 0.8.

SOLUTION:

(a) overshoot: ∆h
!
< 20% =⇒ ζ ≥ 0.5.

rise time: Tr
!
< 0.3s =⇒ ω0 ≥ 6 rad

s .

settling time: T5% = 3 rad
ω0ζ

!
< 2s. ζ and ω0 are already defined by the overshoot and rise time requirements.

We check if the requirements are consistent: T5% < 3rad
0.5·6 rad

s

= 1s.

Hence, the requirements are realizable, under the assumption of a dominant pole pair.

(b) The discretized plant can be computed via

Gz(z) = (1− z−1)Z

{
L−1

{
G(s)

s

}∣∣∣∣
t=kTp

}
.

Using number 7 of the table with Lapclace- and z-transforms, we find

Gz(z) = (1− z−1)Z

{
L−1

{
G(s)

s

}∣∣∣∣
t=kTP

}
= (1− z−1)Z

{
L−1

{
1

s2(s+ 1)

}∣∣∣∣
t=kTP

}

= (1− z−1)
z
[(
TP − 1 + e−TP

)
z +

(
1− e−TP − TPe−TP

)]
(z − 1)2(z − e−TP)

=

(
TP − 1 + e−TP

)
z +

(
1− e−TP − TPe−TP

)
(z − 1)(z − e−TP)

=
0.004837z + 0.004679

(z − 1)(z − 0.9048)

(c) Plot the root locus of the open loop:

1 s = tf('s');
2 G = 1/(sˆ2+s);
3 Tp = 0.1;
4 Gz = c2d(G,Tp,'zoh');
5 rlocus(Gz);

Conclusion: the frequency ω0 = 6 rad
s is only reached for unstable systems. Therefore the objectives cannot be met with a

proportional controller.

(d) The idea: Use the lead compensator to push the pole at 0.9048 to the left. This will bring the disembarkation point of the
root locus more to the left so that the root locus will bend down and path the point of ζ = 0.5 and ω0 = 6.
Moving the pole to the left can be accomplished by placing the zero z01 at the pole at 0.9048. Then, place the pole z1
somewhere left of the compensated pole and move it around until the root locus passes the desired region.
Comment: It is not an alternative to compensate the plant zero at -0.9672 with the controller pole and then using the
controller zero to move the rootlocus to the inner of the unit circle in order to satisfy the requirements. This is due to the fact
that slightly damped controller poles on the negative real axis easily introduce oscillations. In particular, the step response
from command input to controller output can show high oscillations. Hence, it is usually good to avoid controller poles on
the negative real axis.

i. As a starting point, we guess the pole location at z = 0.5.

1 z = tf('z', Tp)
2 Kz = tf([1 -0.9048], [1 -0.5], Tp)
3 rltool(Gz, Kz);
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Figure 2: Direct compensation of plant pole
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Figure 3: Step response

ii. Activate grid from the context menu and play around with the compensator pole so that the root locus crosses ζ = 0.5
and ω0 = 6. This is possible for z1 = 0.391 (see Fig. ??)

iii. The closed-loop poles take the desired locations for an overall controller gain of 4.63 (seen by rltool). Hence, the gain
kp is calculated to

Kz(1) = kp
1− 0.9048

1− 0.391

!
= 4.63

⇔ kp = 4.63 · 0.578

0.0952
= 29.49

This gives the controller

Kz(z) = 29.49
z − 0.9048

z − 0.391
.

The resulting command step response of the closed-loop is shown in Fig. ??. Comment: The command response can be
shown directly in the rltool by using the menu Analysis and then marking step und Other loop response.
It can be seen from the step response that all design requirements are satisfied.

iv. Comment: the step response shows an oscillating behavior. Playing with the rltool, it can be found that the controller
can improved by moving the controller zero slightlty to the left to 0.885

4



i
i

“Session˙10” — 2016/1/17 — 3:16 — page 5 — #5 i
i

i
i

i
i

Nr. function f(t) F (s) = L{f(t)} F (z) = Z{f(k)}

with f(t) = for t¡0 with f(k) = f(kTp)

1 σ(t) 1
s

z
z−1

2 t 1
s2

Tpz
(z−1)2

3 t2 2
s3

T 2
p z(z+1)

(z−1)3

4 e−at 1
s+a

z
z−e−aTp

5 te−at 1
(s+a)2

αTpz
(z−α)2 α = e−aTp

6 1− eat a
s(s+a)

(1−α)z
(z−1)(z−α) α = e−aTp

7 1
a (at− 1− e−at) a

s2(s+a)
z[(aTp−1+α)z+(1−α−aTpα)]

a(z−1)2(z−α) α = e−aTp

8 (1− at) e−at s
(s+a)2

z[z−α(1+aTp)]
(z−α)2 α = e−aTp

9 sin(ωt) ω
s2+ω2

βz
z2−2γz+1

β = sin(ωTp)

γ = cos(ωTp)

10 cos(ωt) s
s2+ω2

z2−γz
z2−2γz+1 γ = cos(ωTp)

11 e−at sin(ωt) ω
(s+a)2+ω2

αβz
z2−2αγz+α2

α = e−aTp

β = sin(ωTp)

γ = cos(ωTp)

Table 2: Table of Laplace- and z-Transforms

5


